Stochastic controllability of semilinear fractional control differential equations

被引:3
作者
Gautam, Pooja [1 ]
Shukla, Anurag [1 ]
机构
[1] Rajkiya Engn Coll Kannauj, Dept Appl Sci, Kannauj 209732, Uttar Pradesh, India
关键词
Stochastic controllability; Fractional semilinear system; Reachable set; Schauder fixed point theorem; BOUNDARY-VALUE-PROBLEMS; APPROXIMATE CONTROLLABILITY; SYSTEMS; INCLUSIONS; EXISTENCE;
D O I
10.1016/j.chaos.2023.113858
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of our research is to identify some sufficient conditions for the stochastic controllability of fractional-order semilinear stochastic systems. The required outcomes are achieved by dividing the system under consideration into two systems: a linear stochastic system and a semilinear deterministic system. The key outcomes are achieved by employing the Schauder fixed point technique, nonlinear monotonicity, and keeping just fractional-order ������ & ISIN; (1/2, 1). One example is presented for demonstrating the outcomes.
引用
收藏
页数:6
相关论文
共 54 条
[1]   Existence and Uniqueness of Positive Solutions for Boundary Value Problems of Fractional Differential Equations [J].
Afshari, Hojjat ;
Marasi, Hamidreza ;
Aydi, Hassen .
FILOMAT, 2017, 31 (09) :2675-2682
[2]  
Agarwal RP, 2009, GEORGIAN MATH J, V16, P401
[3]   A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions [J].
Agarwal, Ravi P. ;
Benchohra, Mouffak ;
Hamani, Samira .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :973-1033
[4]  
Ahmad B, 2012, ELECTRON J QUAL THEO, P1
[5]  
Balasubramaniam P., 2001, J APPL MATH STOCH AN, V14, P329, DOI DOI 10.1155/S1048953301000296
[6]  
Bashirov A. E., 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304), P3196, DOI 10.1109/CDC.1999.827760
[7]   On concepts of controllability for deterministic and stochastic systems [J].
Bashirov, AE ;
Mahmudov, NI .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (06) :1808-1821
[8]   On controllability conception for stochastic systems [J].
Bashirov, AE ;
Kerimov, KR .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1997, 35 (02) :384-398
[9]  
Bashirov AE, 1996, IEEE DECIS CONTR P, P640, DOI 10.1109/CDC.1996.574398
[10]   A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusions of order r ∈(1,2) with delay [J].
Dineshkumar, C. ;
Udhayakumar, R. ;
Vijayakumar, V. ;
Shukla, Anurag ;
Nisar, Kottakkaran Sooppy .
CHAOS SOLITONS & FRACTALS, 2021, 153