Molecular Beam Epitaxy Deposition of In Situ O-Doped CdS Films for Highly Efficient Sb2(S,Se)3 Solar Cells

被引:8
作者
Li, Ke [1 ,2 ]
Cai, Zhiyuan [1 ,2 ]
Yang, Junjie [1 ,2 ]
Wang, Haolin [1 ,2 ]
Zhang, Lijian [1 ,2 ]
Tang, Rongfeng [1 ,2 ]
Zhu, Changfei [1 ,2 ]
Chen, Tao [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Sch Chem & Mat Sci, Dept Mat Sci & Engn,Microscale CAS Key Lab Mat En, Hefei 230026, Anhui, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Energy, Hefei 230041, Peoples R China
基金
中国国家自然科学基金;
关键词
CdS; O; crystal orientation; molecular beam epitaxy; Sb-2(S; Se)(3); solar cells; THIN-FILMS; PHOTOLUMINESCENCE;
D O I
10.1002/adfm.202304141
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Antimony selenosulfide (Sb-2(S,Se)(3)) is considered as a promising light-harvesting material and has been widely used in solar cells. For high-efficiency Sb-2(S,Se)(3) solar cells, the most commonly used electron-transporting layer of cadmium sulfide (CdS) is generally prepared by chemical bath deposition (CBD) approach. However, the hazardous waste liquid from the chemical bath and the sensitivity of the deposition process to the environment are challenges to practical applications. Herein, a molecular beam epitaxy deposition is reported to prepare CdS films, overcoming the drawbacks of CBD process. Furthermore, through introducing oxygen during the deposition of CdS, the sulfur vacancy defects generated in the vacuum deposition process are suppressed. The performance of Sb-2(S,Se)(3) solar cells is accordingly improved significantly. This improvement is attributed to the following aspects: i) the improved optical transmittance of CdS films. ii) The enhanced [hk1] orientation of Sb-2(S,Se)(3) absorber layer. iii) The improved heterojunction quality and suppressed carrier recombination. As a result, a power conversion efficiency of 8.59% for Sb-2(S,Se)(3) solar cells is achieved. This study provides a novel strategy for preparing electron-transporting layers for efficient chalcogenide thin-film solar cells and sheds new light on large-area solar cell applications.
引用
收藏
页数:12
相关论文
共 51 条
[41]   Manipulating the Electrical Properties of Sb2(S,Se)3Film for High-Efficiency Solar Cell [J].
Wang, Xiaomin ;
Tang, Rongfeng ;
Jiang, Chenhui ;
Lian, Weitao ;
Ju, Huanxin ;
Jiang, Guoshun ;
Li, Zhiqiang ;
Zhu, Changfei ;
Chen, Tao .
ADVANCED ENERGY MATERIALS, 2020, 10 (40)
[42]   Development of antimony sulfide-selenide Sb2(S, Se)3-based solar cells [J].
Wang, Xiaomin ;
Tang, Rongfeng ;
Wu, Chunyan ;
Zhu, Changfei ;
Chen, Tao .
JOURNAL OF ENERGY CHEMISTRY, 2018, 27 (03) :713-721
[43]   Interfacial Engineering by Indium-Doped CdS for High Efficiency Solution Processed Sb2(S1-xSex)3 Solar Cells [J].
Wu, Chunyan ;
Jiang, Chenhui ;
Wang, Xiaomin ;
Ding, Honghe ;
Ju, Huanxin ;
Zhang, Lijian ;
Chen, Tao ;
Zhu, Changfei .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (03) :3207-3213
[44]   Nanostructured CdS: O film:: preparation, properties, and application [J].
Wu, X ;
Yan, Y ;
Dhere, RG ;
Zhang, Y ;
Zhou, J ;
Perkins, C ;
To, B .
11TH INTERNATIONAL CONFERENCE ON II-VI COMPOUNDS (II-VI 2003), PROCEEDINGS, 2004, 1 (04) :1062-1066
[45]  
Xin Jin., 2021, ADV MATER, V33
[46]   In situ sulfurization to generate Sb2(Se1-xSx)3 alloyed films and their application for photovoltaics [J].
Yang, Bo ;
Qin, Sikai ;
Xue, Ding-jiang ;
Chen, Chao ;
He, Yi-su ;
Niu, Dongmei ;
Huang, Han ;
Tang, Jiang .
PROGRESS IN PHOTOVOLTAICS, 2017, 25 (01) :113-122
[47]   Sequential Coevaporation and Deposition of Antimony Selenosulfide Thin Film for Efficient Solar Cells [J].
Yin, Yiwei ;
Jiang, Chenhui ;
Ma, Yuyuan ;
Tang, Rongfeng ;
Wang, Xiaomin ;
Zhang, Lijian ;
Li, Zhiqiang ;
Zhu, Changfei ;
Chen, Tao .
ADVANCED MATERIALS, 2021, 33 (11)
[48]   Sulfur-Vacancy Passivation via Selenium Doping in Sb2S3 Solar Cells: Density Functional Theory Analysis [J].
Zhang, Zhaosheng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (49) :20786-20792
[49]   Regulating deposition kinetics via a novel additive-assisted chemical bath deposition technology enables fabrication of 10.57%-efficiency Sb2Se3 solar cells [J].
Zhao, Yuqi ;
Wang, Shaoying ;
Li, Chuang ;
Che, Bo ;
Chen, Xueling ;
Chen, Hongyi ;
Tang, Rongfeng ;
Wang, Xiaomin ;
Chen, Guilin ;
Wang, Ti ;
Gong, Junbo ;
Chen, Tao ;
Xiao, Xudong ;
Li, Jianmin .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (12) :5118-5128
[50]   Regulating Energy Band Alignment via Alkaline Metal Fluoride Assisted Solution Post-Treatment Enabling Sb2(S,Se)3 Solar Cells with 10.7% Efficiency [J].
Zhao, Yuqi ;
Wang, Shaoying ;
Jiang, Chenhui ;
Li, Chuang ;
Xiao, Peng ;
Tang, Rongfeng ;
Gong, Junbo ;
Chen, Guilin ;
Chen, Tao ;
Li, Jianmin ;
Xiao, Xudong .
ADVANCED ENERGY MATERIALS, 2022, 12 (01)