Minimal surfaces and Schwarz lemma

被引:2
作者
Kalaj, David [1 ]
机构
[1] Univ Montenegro, Fac Nat Sci & Math, Podgorica 81000, Montenegro
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2023年 / 34卷 / 03期
关键词
Minimal surfaces; Schwarz lemma; Unit disk; INEQUALITY;
D O I
10.1016/j.indag.2023.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a sharp Schwarz lemma type inequality for the Weierstrass-Enneper parameterization of minimal disks. It states the following. If F : D & RARR; & sigma; is a conformal harmonic parameterization of a minimal disk & sigma; & SUB; R3, where D is the unit disk and |& sigma;| = & pi; R2, then |Fx(z)|(1 - |z|2) & LE; R. If for some z the previous inequality is equality, then the surface is an affine image of a disk, and F is linear up to a Mobius transformation of the unit disk. & COPY; 2023 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:637 / 642
页数:6
相关论文
共 8 条
[1]  
Bol G., 1941, JB DTSCH MATH VEREIN, V51, P219
[2]  
DUREN P., 2004, HARMONIC MAPPINGS PL
[3]  
Forstneric F, 2021, Arxiv, DOI arXiv:2102.12403
[4]   A Sharp Inequality for Harmonic Diffeomorphisms of the Unit Disk [J].
Kalaj, David .
JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (01) :392-401
[5]   CARATHEODORY AND SMIRNOV TYPE THEOREMS FOR HARMONIC MAPPINGS OF THE UNIT DISK ONTO SURFACES [J].
Kalaj, David ;
Markovic, Marijan ;
Mateljevic, Miodrag .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (02) :565-580
[6]   ISOPERIMETRIC INEQUALITY [J].
OSSERMAN, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) :1182-1238
[7]  
Pavlovie M., 2014, INTRODUCTION, V52
[8]   The isoperimetric inequality on a surface [J].
Topping, P .
MANUSCRIPTA MATHEMATICA, 1999, 100 (01) :23-33