Cross-Domain Contrastive Learning for Unsupervised Domain Adaptation

被引:85
|
作者
Wang, Rui [1 ,2 ]
Wu, Zuxuan [1 ,2 ]
Weng, Zejia [1 ,2 ]
Chen, Jingjing [1 ,2 ]
Qi, Guo-Jun [3 ]
Jiang, Yu-Gang [1 ,2 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
[2] Shanghai Collaborat Innovat Ctr Intelligent Visua, Shanghai, Peoples R China
[3] Futurewei Technol, Seattle Cloud Lab, Bellevue, WA 98004 USA
关键词
Contrastive learning; unsupervised domain adaptation; source data-free;
D O I
10.1109/TMM.2022.3146744
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain. Most existing UDA methods learn domain-invariant feature representations by minimizing feature distances across domains. In this work, we build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets. Exploring the same set of categories shared by both domains, we introduce a simple yet effective framework CDCL, for domain alignment. In particular, given an anchor image from one domain, we minimize its distances to cross-domain samples from the same class relative to those from different categories. Since target labels are unavailable, we use a clustering-based approach with carefully initialized centers to produce pseudo labels. In addition, we demonstrate that CDCL is a general framework and can be adapted to the data-free setting, where the source data are unavailable during training, with minimal modification. We conduct experiments on two widely used domain adaptation benchmarks, i.e., Office-31 and VisDA-2017, for image classification tasks, and demonstrate that CDCL achieves state-of-the-art performance on both datasets.
引用
收藏
页码:1665 / 1673
页数:9
相关论文
共 50 条
  • [21] Volumetric Body Composition Through Cross-Domain Consistency Training for Unsupervised Domain Adaptation
    Ali, Shahzad
    Lee, Yu Rim
    Park, Soo Young
    Tak, Won Young
    Jung, Soon Ki
    ADVANCES IN VISUAL COMPUTING, ISVC 2023, PT I, 2023, 14361 : 289 - 299
  • [22] Contrastive Cross-Domain Sequential Recommendation
    Cao, Jiangxia
    Cong, Xin
    Sheng, Jiawei
    Liu, Tingwen
    Wang, Bin
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 138 - 147
  • [23] Contrastive Cross-domain Recommendation in Matching
    Xie, Ruobing
    Liu, Qi
    Wang, Liangdong
    Liu, Shukai
    Zhang, Bo
    Lin, Leyu
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4226 - 4236
  • [24] Contrastive transformer based domain adaptation for multi-source cross-domain sentiment classification
    Fu, Yanping
    Liu, Yun
    KNOWLEDGE-BASED SYSTEMS, 2022, 245
  • [25] Cross-domain fault diagnosis method for rolling bearings based on contrastive universal domain adaptation
    Kang, Shouqiang
    Tang, Xi
    Wang, Yujing
    Wang, Qingyan
    Xie, Jinbao
    ISA TRANSACTIONS, 2024, 146 : 195 - 207
  • [26] Dual Contrastive Learning for Cross-Domain Named Entity Recognition
    Xu, Jingyun
    Yu, Junnan
    Cai, Yi
    Chua, Tat-Seng
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (06)
  • [27] A Contrastive Representation Domain Adaptation Method for Industrial Time-Series Cross-Domain Prediction
    Jia, Zidi
    Ren, Lei
    Tang, Yang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025,
  • [28] Contrastive Vicinal Space for Unsupervised Domain Adaptation
    Na, Jaemin
    Han, Dongyoon
    Chang, Hyung Jin
    Hwang, Wonjun
    COMPUTER VISION, ECCV 2022, PT XXXIV, 2022, 13694 : 92 - 110
  • [29] Integrating multimodal contrastive learning with prototypical domain alignment for unsupervised domain adaptation of time series
    Park, Seo-Hyeong
    Syazwany, Nur Suriza
    Nam, Ju-Hyeon
    Lee, Sang-Chul
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 137
  • [30] Unsupervised domain adaptation for the detection of cardiomegaly in cross-domain chest X-ray images
    Thiam, Patrick
    Lausser, Ludwig
    Kloth, Christopher
    Blaich, Daniel
    Liebold, Andreas
    Beer, Meinrad
    Kestler, Hans A.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6