Global small solutions of MHD boundary layer equations in Gevrey function space

被引:3
作者
Tan, Zhong [1 ,2 ]
Wu, Zhonger [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen, Peoples R China
[2] Xiamen Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
MHD boundary layer; Littlewood-Paley theory; Gevrey energy estimate; Well-posedness theory; WELL-POSEDNESS; ANALYTIC SOLUTIONS; PRANDTL SYSTEM; ILL-POSEDNESS; EXISTENCE;
D O I
10.1016/j.jde.2023.04.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain global small solutions and decay estimates for the two-dimensional MHD bound-ary layer in Gevrey space without any structural assumptions, generalizing the results of [20] in analytic space. The proof method is mainly inspired by [14] and [26], using new auxiliary functions and finer structural analysis to overcome the difficulty of the loss of derivatives and then we obtain the global well-posedness of the MHD boundary layer in the Gevrey 32 space.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:444 / 517
页数:74
相关论文
共 29 条
[1]  
Alexandre R, 2015, J AM MATH SOC, V28, P745
[2]  
Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]  
Chemin J.-Y., 2004, SEMINAIRE CONGRES, P99
[5]   Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow [J].
Chen, Dongxiang ;
Wang, Yuxi ;
Zhang, Zhifei .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (04) :1119-1142
[6]   Well-Posedness of the Prandtl Equations Without Any Structural Assumption [J].
Dietert, Helge ;
Gerard-Varet, David .
ANNALS OF PDE, 2019, 5 (01)
[7]   Formal derivation and stability analysis of boundary layer models in MHD [J].
Gerard-Varet, D. ;
Prestipino, M. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (03)
[8]  
Gérard-Varet D, 2015, ANN SCI ECOLE NORM S, V48, P1273
[9]  
Gérard-Varet D, 2010, J AM MATH SOC, V23, P591
[10]   Almost Global Existence for the Prandtl Boundary Layer Equations [J].
Ignatova, Mihaela ;
Vicol, Vlad .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (02) :809-848