FDM-3D printing parameter optimization using taguchi approach on surface roughness of thermoplastic polyurethane parts

被引:10
|
作者
Hasdiansah, Hasdiansah [1 ]
Yaqin, Rizqi Ilmal [2 ]
Pristiansyah, Pristiansyah [1 ]
Umar, Mega Lazuardi [3 ]
Priyambodo, Bambang Hari [4 ]
机构
[1] Politekn Manufaktur Negeri Bangka Belitung, Dept Mech Engn, Sungai Liat 33211, Bangka, Indonesia
[2] Politekn Kelautan Dan Perikanan Dumai, Dept Ship Machinery, Dumai 28824, Riau, Indonesia
[3] Politekn Negeri Banyuwangi, Dept Mech Engn, Banyuwangi 68461, East Java, Indonesia
[4] Sekolah Tinggi Teknol Warga Surakarta, Dept Mech Engn, Sukoharjo 57552, Central Java, Indonesia
来源
INTERNATIONAL JOURNAL OF INTERACTIVE DESIGN AND MANUFACTURING - IJIDEM | 2023年 / 17卷 / 06期
基金
英国科研创新办公室;
关键词
Analysis of variance; Fused deposition modelling; Surface roughness; Taguchi; TOOL WEAR; 3D;
D O I
10.1007/s12008-023-01304-w
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
FDM (Fused Deposition Modelling) 3D Printing requires the special review of process parameters with taguchi optimization for optimal print surface finish. Several previous studies have not yet investigated the parameters of the FDM 3D printing process for the surface roughness of TPU prints. Even though surface roughness is an important point for FDM-3D Printing print quality. The aim of this study is investigate the optimum 3D printing process parameters on the surface roughness of TPU (Thermoplastic Polyurethane). The input variables for printing TPU in this study are flow rate, layer thickness, nozzle temperature, print speed, overlap and fan speed. The output variable of the process parameters is the surface roughness value. The L-27 fractional Taguchi method was used for the optimization analysis. The optimal parameter combination is selected based on the signal-to-noise (S/N) ratio and Analysis of Variance (ANOVA). In addition, linear regression analysis and statistics are used to identify input variables and output variables. The results of our study explain that the surface roughness of the print is affected by the layer thickness. Based on parameter interactions, layer thickness has a significant influence with a contribution of 65.11%. Finally, the confirmation test shows that there is a good agreement between the experimental data and the statistics. The findings of this study suggest that layer thickness is an optimal process parameter for the surface roughness of 3D printing TPU fabrication. Process parameter optimization investigation of TPU printed surface roughness is a novelty study to improve the print quality of FDM 3D printing in the industrial.
引用
收藏
页码:3011 / 3024
页数:14
相关论文
共 50 条
  • [1] FDM-3D printing parameter optimization using taguchi approach on surface roughness of thermoplastic polyurethane parts
    Hasdiansah Hasdiansah
    Rizqi Ilmal Yaqin
    Pristiansyah Pristiansyah
    Mega Lazuardi Umar
    Bambang Hari Priyambodo
    International Journal on Interactive Design and Manufacturing (IJIDeM), 2023, 17 : 3011 - 3024
  • [2] Evaluation on effect of printing process parameter through Taguchi approach on mechanical properties of 3D printed PLA specimens using FDM at constant printing temperature
    Lokesh, N.
    Praveena, B. A.
    Reddy, Sudheer J.
    Vasu, Vikram Kedambadi
    Vijaykumar, S.
    MATERIALS TODAY-PROCEEDINGS, 2022, 52 : 1288 - 1293
  • [3] Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology
    Hikmat, Mohammed
    Rostam, Sarkawt
    Ahmed, Yassin Mustafa
    RESULTS IN ENGINEERING, 2021, 11
  • [4] 3D Printing Parameter Optimization Using Taguchi Approach to Examine Acrylonitrile Styrene Acrylate (ASA) Mechanical Properties
    Hameed, Abdul Zubar
    Aravind Raj, Sakthivel
    Kandasamy, Jayakrishna
    Shahzad, Muhammad Atif
    Baghdadi, Majed Abubakr
    POLYMERS, 2022, 14 (16)
  • [5] Investigating the Impact of Productivity on Surface Roughness and Dimensional Accuracy in FDM 3D Printing
    Kónya G.
    Periodica Polytechnica Transportation Engineering, 2024, 52 (02): : 128 - 133
  • [6] Ameliorating Surface Roughness and Tensile Strength of ASA Fabricated Parts by Analyzing Significant FDM Printing Parameters Using Response Surface Methodology
    Sharma, Pardeep
    Gahletia, Sumit
    Bhardwaj, Kunal
    JOURNAL OF POLYMER & COMPOSITES, 2023, 11 (03) : 1 - 12
  • [7] Optimization of surface roughness and tool wear in hard turning of austempered ductile iron (grade 3) using Taguchi method
    Manivel, D.
    Gandhinathan, R.
    MEASUREMENT, 2016, 93 : 108 - 116
  • [9] CNC turning parameter optimization for surface roughness of aluminium-2014 alloy using Taguchi methodology
    Aswal A.
    Jha A.
    Tiwari A.
    Modi Y.K.
    Journal Europeen des Systemes Automatises, 2019, 52 (04): : 387 - 390
  • [10] Manufacture of polyurethane foam parts for automotive industry using FDM 3D printed molds
    Romero, Pablo E.
    Arribas-Barrios, Jose
    Rodriguez-Alabanda, Oscar
    Gonzalez-Merino, Ramon
    Guerrero-Vaca, Guillermo
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2021, 32 : 396 - 404