Consistency of Monte Carlo Estimators for Risk-Neutral PDE-Constrained Optimization

被引:3
|
作者
Milz, Johannes [1 ]
机构
[1] Tech Univ Munich, Dept Math, Boltzmannstr 3, D-85748 Garching, Germany
关键词
Stochastic programming; Monte Carlo sampling; Sample average approximation; Optimization under uncertainty; PDE-constrained optimization; LAGRANGIAN-SQP METHOD; STOCHASTIC COLLOCATION; CHANCE CONSTRAINTS; APPROXIMATION; CONVERGENCE; ALGORITHMS; BOUNDS;
D O I
10.1007/s00245-023-09967-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the sample average approximation (SAA) method to risk-neutral optimization problems governed by nonlinear partial differential equations (PDEs) with random inputs. We analyze the consistency of the SAA optimal values and SAA solutions. Our analysis exploits problem structure in PDE-constrained optimization problems, allowing us to construct deterministic, compact subsets of the feasible set that contain the solutions to the risk-neutral problem and eventually those to the SAA problems. The construction is used to study the consistency using results established in the literature on stochastic programming. The assumptions of our framework are verified on three nonlinear optimization problems under uncertainty.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Consistency of Monte Carlo Estimators for Risk-Neutral PDE-Constrained Optimization
    Johannes Milz
    Applied Mathematics & Optimization, 2023, 87
  • [2] SAMPLE SIZE ESTIMATES FOR RISK-NEUTRAL SEMILINEAR PDE-CONSTRAINED OPTIMIZATION
    Milz, Johannes
    Ulbrich, Michael
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (01) : 844 - 869
  • [3] Risk-neutral PDE-constrained generalized Nash equilibrium problems
    Gahururu, Deborah B.
    Hintermueller, Michael
    Surowiec, Thomas M.
    MATHEMATICAL PROGRAMMING, 2023, 198 (02) : 1287 - 1337
  • [4] Risk-neutral PDE-constrained generalized Nash equilibrium problems
    Deborah B. Gahururu
    Michael Hintermüller
    Thomas M. Surowiec
    Mathematical Programming, 2023, 198 : 1287 - 1337
  • [5] Asymptotic properties of Monte Carlo methods in elliptic PDE-constrained optimization under uncertainty
    Roemisch, W.
    Surowiec, T. M.
    NUMERISCHE MATHEMATIK, 2024, 156 (05) : 1887 - 1914
  • [6] Algorithms for PDE-constrained optimization
    Herzog R.
    Kunisch K.
    GAMM Mitteilungen, 2010, 33 (02) : 163 - 176
  • [7] Existence and Optimality Conditions for Risk-Averse PDE-Constrained Optimization
    Kouri, D. P.
    Surowiec, T. M.
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2018, 6 (02): : 787 - 815
  • [8] OPTIMAL SOLVERS FOR PDE-CONSTRAINED OPTIMIZATION
    Rees, Tyrone
    Dollar, H. Sue
    Wathen, Andrew J.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01) : 271 - 298
  • [9] Robust preconditioners for PDE-constrained optimization with limited observations
    Mardal, Kent-Andre
    Nielsen, Bjorn Fredrik
    Nordaas, Magne
    BIT NUMERICAL MATHEMATICS, 2017, 57 (02) : 405 - 431
  • [10] A Multigrid Solver for PDE-Constrained Optimization with Uncertain Inputs
    Ciaramella, Gabriele
    Nobile, Fabio
    Vanzan, Tommaso
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (01)