Improving machine learning based phase and hardness prediction of high-entropy alloys by using Gaussian noise augmented data

被引:28
作者
Ye, Yicong [1 ]
Li, Yahao [1 ]
Ouyang, Runlong [2 ]
Zhang, Zhouran [1 ]
Tang, Yu [1 ]
Bai, Shuxin [1 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Dept Mat Sci & Engn, Changsha 410073, Peoples R China
[2] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha 410073, Peoples R China
关键词
Machine learning; High-entropy alloys; Data augmentation; Alloy prediction; MECHANICAL-PROPERTIES; SOLID-SOLUTION; DESIGN;
D O I
10.1016/j.commatsci.2023.112140
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Developing a machine learning (ML) based high-entropy alloys (HEA) prediction model is an advanced method to improve the traditional trial-and-error experiments with a long period and high cost. However, the ML model is highly dependent on data. This paper draws on the experience of the image data augmentation approaches, and proposes a simple material data augmentation method, which aims to solve the difficulties of small samples and large noise of material data, by adding Gaussian noise to the original data to generate more "pseudo sam -ples". This work respectively starts by the HEA phase classification task and the hardness regression task, to study the effect of noise on data enhancement. It is found that the noise samples are different samples with new in-formation. The noise samples enhanced data can significantly improve the test results of the models. Further testing results with the validation set that the models have never seen before, demonstrate that the regression model of medium noise samples enhanced has the best prediction accuracy (R2 = 0.954). It turns out that the data enhancement method applied in this work helps the ML models to achieve a more efficient and accurate prediction of HEA phase and hardness. Besides, this work provides a reference method for improving the ML models and designing new HEA.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Chang, Yao-Jen
    Jui, Chia-Yung
    Lee, Wen-Jay
    Yeh, An-Chou
    JOM, 2019, 71 (10) : 3433 - 3442
  • [2] Machine-learning phase prediction of high-entropy alloys
    Huang, Wenjiang
    Martin, Pedro
    Zhuang, Houlong L.
    ACTA MATERIALIA, 2019, 169 : 225 - 236
  • [3] Machine learning-based prediction of phases in high-entropy alloys
    Machaka, Ronald
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 188
  • [4] Phase prediction of high-entropy alloys based on machine learning and an improved information fusion approach
    Chen, Cun
    Han, Xiaoli
    Zhang, Yong
    Liaw, Peter K.
    Ren, Jingli
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 239
  • [5] Machine learning-based prediction of phases in high-entropy alloys: A data article
    Machaka, Ronald
    Motsi, Glenda T.
    Raganya, Lerato M.
    Radingoana, Precious M.
    Chikosha, Silethelwe
    DATA IN BRIEF, 2021, 38
  • [6] Machine learning prediction of hardness in solid solution high entropy alloys
    Gao, Zhiyu
    Zhao, Fei
    Gao, Sida
    Xia, Tian
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [7] Yield strength prediction of high-entropy alloys using machine learning
    Bhandari, Uttam
    Rafi, Md Rumman
    Zhang, Congyan
    Yang, Shizhong
    MATERIALS TODAY COMMUNICATIONS, 2021, 26
  • [8] Phase prediction and effect of intrinsic residual strain on phase stability in high-entropy alloys with machine learning
    Chang, Huinan
    Tao, Yiwen
    Liaw, Peter K.
    Ren, Jingli
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 921
  • [9] Machine Learning-Based Prediction of Complex Combination Phases in High-Entropy Alloys
    Thampiriyanon, Jirapracha
    Khumkoa, Sakhob
    METALS, 2025, 15 (03)
  • [10] Predictive descriptors in machine learning and data-enabled explorations of high-entropy alloys
    Roy, Ankit
    Balasubramanian, Ganesh
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 193