Spatial confinement of sliver nanoparticles in nitrogen-doped carbon framework with high catalytic activity and long-term cycling

被引:1
作者
Yang, Meng [1 ]
Zhang, Jingwu [1 ]
Wang, Jinming [1 ]
Gao, Wei [1 ]
Liu, Di [1 ]
Li, Lanjie [2 ]
Wang, Yimin [3 ]
Peng, Qiuming [1 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao, Peoples R China
[2] HBIS Grp Co Ltd, Chengde Iron & Steel Grp Co Ltd, Chengde, Hebei, Peoples R China
[3] First Hosp Qinhuangdao, Dept Cent Lab, Qinhuangdao, Peoples R China
关键词
ZIF-derived catalysts; Ag nanoparticle; oxygen reduction reaction; Zn-air batteries; DFT caculation; OXYGEN REDUCTION REACTION; TOTAL-ENERGY CALCULATIONS; AG NANOPARTICLES; EFFICIENT ELECTROCATALYST; POROUS CARBON; REACTION ORR; ELECTROREDUCTION; CO;
D O I
10.3389/fenrg.2022.1082239
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The development of efficient, economical and stable oxygen reduction reaction (ORR) electro-catalysts is crucial to energy storage-conversion technology. Reducing metal dimension to nanosize is a promising approach to maximize its efficiency, whereas the migration and aggregation of nanoparticles have severely hampered their large-scale applications. Herein, we report a new catalyst of N-doped carbon-coated Ag nano-particles (Ag NP@N-C), wherein Ag nanoparticles are confined by N-doped carbon framework. This as-synthesized Ag NP@N-C exhibits excellent ORR performance with a half-wave potential of 0.83 V and a limit-current density of 7.03 mA cm(-2) in an alkaline medium. More importantly, its durability (cycling for 3600 min), methanol resistance ability in alkaline solutions and catalytic properties in rechargeable zinc-air battery outperform those of commercial Pt/C catalyst and other similar Ag-based catalysts reported so far. The main reason stems from the fact that the interaction between Ag nanoparticles and the support of N-doped carbon can be enhanced by the co-work of pyridine nitrogen and carbon vacancy, rationalizing uniform dispersion of Ag particles. Taking into account its simplicity and high electrochemical properties, we believe that spatial confinement might take an effective trajectory to develop new and large-scale catalysts.
引用
收藏
页数:11
相关论文
共 40 条
[1]   Multifunctional Mo-N/C@MoS2 Electrocatalysts for HER, OER, ORR, and Zn-Air Batteries [J].
Amiinu, Ibrahim Saana ;
Pu, Zonghua ;
Liu, Xiaobo ;
Owusu, Kwadwo Asare ;
Monestel, Hellen Gabriela Rivera ;
Boakye, Felix Ofori ;
Zhang, Haining ;
Mu, Shichun .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (44)
[2]   Study of Anode Catalysts and Fuel Concentration on Direct Hydrazine Alkaline Anion-Exchange Membrane Fuel Cells [J].
Asazawa, Koichiro ;
Sakamoto, Tomokazu ;
Yamaguchi, Susumu ;
Yamada, Koji ;
Fujikawa, Hirotoshi ;
Tanaka, Hirohisa ;
Oguro, Keisuke .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (04) :B509-B512
[3]   Cobalt@Nitrogen-Doped Porous Carbon Fiber Derived from the Electrospun Fiber of Bimetal-Organic Framework for Highly Active Oxygen Reduction [J].
Bai, Qing ;
Shen, Feng-Cui ;
Li, Shun-Li ;
Liu, Jiang ;
Dong, Long-Zhang ;
Wang, Zeng-Mei ;
Lan, Ya-Qin .
SMALL METHODS, 2018, 2 (12)
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[6]   Hierarchical 3D Architectured Ag Nanowires Shelled with NiMn-Layered Double Hydroxide as an Efficient Bifunctional Oxygen Electrocatalyst [J].
Chala, Soressa Abera ;
Tsai, Meng-Che ;
Su, Wei-Nien ;
Ibrahim, Kassa Belay ;
Thirumalraj, Balamurugan ;
Chan, Ting-Shan ;
Lee, Jyh-Fu ;
Dai, Hongjie ;
Hwang, Bing-Joe .
ACS NANO, 2020, 14 (02) :1770-1782
[7]   Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction [J].
Chen, Yuanjun ;
Ji, Shufang ;
Wang, Yanggang ;
Dong, Juncai ;
Chen, Wenxing ;
Li, Zhi ;
Shen, Rongan ;
Zheng, Lirong ;
Zhuang, Zhongbin ;
Wang, Dingsheng ;
Li, Yadong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (24) :6937-6941
[8]   3D ordered macro-/mesoporous carbon supported Ag nanoparticles for efficient electrocatalytic oxygen reduction reaction [J].
Dong, Jing ;
Sun, Tingting ;
Li, Shengyu ;
Shan, Nannan ;
Chen, Jianfeng ;
Yan, Yushan ;
Xu, Lianbin .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 554 :177-182
[9]   Oxygen reduction at electrochemically deposited crystallographically oriented Au(100)-like gold nanoparticles [J].
El-Deab , MS ;
Sotomura, T ;
Ohsaka, T .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (01) :29-34
[10]  
Guo F., 2022, NANO ENERGY, V1, DOI DOI 10.1016/j.nanoen.2022.107508