Aronson-Benilan estimates for weighted porous medium equations under the geometric flow

被引:0
作者
Azami, Shahroud [1 ]
机构
[1] Imam Khomeini Int Univ, Fac Sci, Dept Pure Math, Qazvin, Iran
关键词
geometric flow; gradient estimate; Harnack inequality; porous medium equation; DIFFUSION-EQUATIONS; HEAT-EQUATIONS; RICCI; INEQUALITIES;
D O I
10.1002/mma.9032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study Aronson-B & eacute;nilan gradient estimates for positive solutions of weighted porous medium equations eth (t)u(x, t) = delta(Phi)u(p)(x, t), (x, t) is an element of M x [0, T]coupled with the geometric flow eth g/ eth t= 2h(t), eth g/ eth t = delta Phi on a complete measure space (Mn, g, e(-Phi)dv). As an application, by integrating the gradient estimates, we derive the corresponding Harnack inequalities.
引用
收藏
页码:8988 / 9005
页数:18
相关论文
共 34 条
[1]  
[Anonymous], 1994, Lectures on differential geometry
[2]  
Aronson G., 1979, C R ACAD SCI PARIS S, V288, pA103
[3]   Gradient estimates for the heat equation under the Ricci flow [J].
Bailesteanu, Mihai ;
Cao, Xiaodong ;
Pulemotov, Artem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3517-3542
[4]  
Bakry D, 1999, REV MAT IBEROAM, V15, P143
[5]   Sobolev inequalities and Myers's diameter theorem for an abstract Markov generator [J].
Bakry, D ;
Ledoux, M .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) :253-270
[6]  
Bakry D., 1985, Seminaire de probabilites de Strasbourg, P177
[8]   Aronson-Benilan estimates for the porous medium equation under the Ricci flow [J].
Cao, Huai-Dong ;
Zhu, Meng .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (04) :729-748
[9]   DIFFERENTIAL HARNACK ESTIMATES FOR TIME-DEPENDENT HEAT EQUATIONS WITH POTENTIALS [J].
Cao, Xiaodong ;
Hamilton, Richard S. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) :989-1000
[10]   THE RICCI-BOURGUIGNON FLOW [J].
Catino, Giovanni ;
Cremaschi, Laura ;
Djadli, Zindine ;
Mantegazza, Carlo ;
Mazzieri, Lorenzo .
PACIFIC JOURNAL OF MATHEMATICS, 2017, 287 (02) :337-370