Fabrication of Pt/Co3O4 nanocatalysts based on pollen template for low-temperature CO oxidation

被引:12
|
作者
Jiang, Bo [1 ]
Huang, Mingzhen [1 ]
Cai, Dongren [1 ]
Tan, Kok Bing [1 ]
Zhan, Guowu [1 ]
机构
[1] Huaqiao Univ, Integrated Nanocatalysts Inst INCI, Coll Chem Engn, 668 Jimei Ave, Xiamen 361021, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
CO oxidation; Biotemplate; Pt; Base etching; In-situ DRIFTS; CO3O4; PERFORMANCE; CATALYSTS;
D O I
10.1016/j.catcom.2022.106597
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we prepared supported Pt/Co3O4 nanocatalysts for CO oxidation by using a biological template method. It was found that the pollen template after base etching favored the deposition of Co(OH)2 and the fabrication of Co3O4 after calcination treatment. The Pt/bio-Co3O4-BB supported catalyst prepared by twice base etching treatments exhibited excellent catalytic activity, which could totally convert CO to CO2 at 70 degrees C. Especially, the first base etching treatment on the pollen template would etch a higher amount of biological components from the core of pollen, which was beneficial to the deposition of Co3O4, while the second base etching treatment on bio-Co3O4 support before the immobilization of Pt further modified the surface properties and improved catalyst activity. In-situ DRIFTS and XPS characterizations demonstrated that base treatment could promote the formation of oxygen vacancies and increase the surface ratio of Pt0/Pttotal, which enhanced the CO adsorption. Accordingly, we provide a new biological template synthetic strategy for catalysts with controlled morphology and good catalytic activity.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Low-temperature CO oxidation over CUO/Co3O4 catalysts
    Hu, Sulin
    Cheng, Tao
    Zhang, Youjin
    Fang, Zhiyong
    Han, Kaidong
    Gao, Minrui
    ASIAN JOURNAL OF CHEMISTRY, 2008, 20 (06) : 4719 - 4730
  • [2] On the catalytic activity of Co3O4 in low-temperature CO oxidation
    Jansson, J
    Palmqvist, AEC
    Fridell, E
    Skoglundh, M
    Österlund, L
    Thormählen, P
    Langer, V
    JOURNAL OF CATALYSIS, 2002, 211 (02) : 387 - 397
  • [3] Gold nanoparticles on Fe-doped Co3O4 for enhanced low-temperature CO oxidation
    Liu, Jianfang
    Huang, Hongwei
    Yang, Jie
    Liu, Laishuan
    Li, Yu
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2025, 78 : 175 - 186
  • [4] Low-temperature CO oxidation over Co3O4/Al2O3
    Jansson, J
    JOURNAL OF CATALYSIS, 2000, 194 (01) : 55 - 60
  • [5] Ultrathin, Polycrystalline, Two-Dimensional Co3O4 for Low-Temperature CO Oxidation
    Cai, Yafeng
    Xu, Jia
    Guo, Yun
    Liu, Jingyue
    ACS CATALYSIS, 2019, 9 (03): : 2558 - 2567
  • [6] High Efficient Mesoporous Co3O4 Nanocatalysts For Methane Combustion at Low Temperature
    Han, Zhen
    Zhang, Hengqiang
    Dong, Bing
    Ni, Yangyang
    Kong, Aiguo
    Shan, Yongkui
    CHEMISTRYSELECT, 2016, 1 (05): : 979 - 983
  • [7] Green fabrication of hierarchically-structured Pt/bio-CeO2 nanocatalysts using natural pollen templates for low-temperature CO oxidation
    Jiang, Bo
    Cha, Xingwen
    Huang, Zhongliang
    Hu, Siyuan
    Xu, Kaiji
    Cai, Dongren
    Xiao, Jingran
    Zhan, Guowu
    MOLECULAR CATALYSIS, 2022, 524
  • [8] Low-temperature CO oxidation by Co3O4 nanocubes on the surface of Ca(OH)2 nanosheets
    Lv, Shuai
    Xia, Guofu
    Jin, Chao
    Hao, Chunyu
    Wang, Li
    Li, Jinlin
    Zhang, Yuhua
    Zhu, Jun Jiang
    CATALYSIS COMMUNICATIONS, 2016, 86 : 100 - 103
  • [9] Low-temperature and stable CO oxidation of Co3O4/TiO2 monolithic catalysts
    Tang, Xinyue
    Wang, Junchao
    Ma, Yonghui
    Li, Jing
    Zhang, Xinglai
    Liu, Baodan
    CHINESE CHEMICAL LETTERS, 2021, 32 (01) : 48 - 52
  • [10] INFLUENCE OF DRY OPERATING-CONDITIONS - OBSERVATION OF OSCILLATIONS AND LOW-TEMPERATURE CO OXIDATION OVER CO3O4 AND AU/CO3O4 CATALYSTS
    CUNNINGHAM, DAH
    KOBAYASHI, T
    KAMIJO, N
    HARUTA, M
    CATALYSIS LETTERS, 1994, 25 (3-4) : 257 - 264