Cu@NC as high-performance and durable electrocatalyst for oxygen reduction reaction in alkaline membrane fuel cells

被引:9
|
作者
Peera, Shaik Gouse [1 ]
Liu, Chao [2 ]
Asokan, Arunchander [3 ]
Suss, Matthew E. [3 ,4 ,5 ]
机构
[1] Keimyung Univ, Dept Environm Sci, 1095 Dalseo Gu, Daegu 42601, South Korea
[2] Jiangxi Univ Sci & Technol, Fac Mat Met & Chem, Ganzhou 341000, Peoples R China
[3] Technion Israel Inst Technol, Fac Mech Engn, IL-320003 Haifa, Israel
[4] Technion Israel Inst Technol, Grand Technion Energy Program, IL-3200003 Haifa, Israel
[5] Technion Israel Inst Technol, Wolfson Dept Chem Engn, IL-3200003 Haifa, Israel
基金
新加坡国家研究基金会;
关键词
Cu@NC; Oxygen reduction reaction; Cu-N-C; Peroxide; Fuel cells; Anion exchange membrane fuel cells; PEROXIDE FORMATION RATES; NITROGEN-DOPED CARBON; CATALYSTS; STABILITY; EFFICIENT; FRAMEWORKS; IRON; GRAPHENE; SITES; ANODE;
D O I
10.1016/j.jallcom.2022.168636
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Discovery of electrocatalysts composed of cheap transition metals are urgent to replace the traditional Pt/C catalyst used for oxygen reduction reaction (ORR). Herein, we synthesized Cu nanoparticles encapsulated with nitrogen-doped carbon (Cu@NC) as an excellent and durable catalyst for ORR. A systematic evaluation of the effect of Cu content, acid leaching and secondary heat treatment have been established with the help of half-cell studies. The morphological analysis revealed that Cu nanoparticles surrounded by thick nitrogen doped carbon layers and further, the acid leaching and subsequent pyrolysis, boosted the electrocatalytic performance. The optimized Cu@NC catalyst showed onset potential (potential corresponding to a current density of 0.10 mA cm-2) and half-wave potential of 0.97 V vs. RHE and 0.85 V vs. RHE, surpassing the state -of-the-art Pt/C catalyst. In addition, the Cu@NC catalyst exhibited outstanding durability, tolerance to carbon monoxide and methanol molecules. In the alkaline fuel cell, Cu@NC catalyst delivered 118 mW cm-2 peak power density in alkaline fuel cell operated with H2-O2, whereas Pt/C only delivered a peak power density of 97 mW cm-2 under ambient operating conditions. High ORR activity and better stability of Cu@ NC catalyst could be a potential alternative to Pt/C catalyst in alkaline fuel cells and metal-air cell cathodes.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Hybrid high-performance oxygen reduction reaction Fe-N-C electrocatalyst for anion exchange membrane fuel cells
    Ahmed, Zubair
    Akula, Srinu
    Kozlova, Jekaterina
    Piirsoo, Helle-Mai
    Kukli, Kaupo
    Kikas, Arvo
    Kisand, Vambola
    Kaarik, Maike
    Leis, Jaan
    Treshchalov, Alexey
    Aruvali, Jaan
    Tammeveski, Kaido
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 62 : 849 - 858
  • [2] A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction
    Xu, Jingjing
    Lu, Shiyao
    Chen, Xu
    Wang, Jianan
    Zhang, Bo
    Zhang, Xinyu
    Xiao, Chunhui
    Ding, Shujiang
    NANOTECHNOLOGY, 2017, 28 (48)
  • [3] Preparation and characterization of Cu-N-C electrocatalysts for oxygen reduction reaction in alkaline anion exchange membrane fuel cells
    Kang, Yun Sik
    Heo, Yoonhye
    Kim, Pil
    Yoo, Sung Jong
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 52 : 35 - 41
  • [4] Advancements in electrocatalyst architecture for enhanced oxygen reduction reaction in anion exchange membrane fuel cells: A comprehensive review
    Letchumanan, Iswary
    Yunus, Rozan Mohamad
    Masdar, Mohd Shahbudin Mastar
    Karim, Nabila A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 104 : 527 - 546
  • [5] A high-performance nitrogen-rich ZIF-8-derived Fe-NC electrocatalyst for the oxygen reduction reaction
    Zhe-qin, Chen
    Zhong Xiao-cong
    Xie Yong-min
    Liu Jia-ming
    Xu Zhi-feng
    Wang Rui-xiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 884
  • [6] Anchoring Single Copper Atoms to Microporous Carbon Spheres as High-Performance Electrocatalyst for Oxygen Reduction Reaction
    Zong, Lingbo
    Fan, Kaicai
    Wu, Weicui
    Cui, Lixiu
    Zhang, Lili
    Johannessen, Bernt
    Qi, Dongchen
    Yin, Huajie
    Wang, Yun
    Liu, Porun
    Wang, Lei
    Zhao, Huijun
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (41)
  • [7] High performance platinum single atom electrocatalyst for oxygen reduction reaction
    Liu, Jing
    Jiao, Menggai
    Lu, Lanlu
    Barkholtz, Heather M.
    Li, Yuping
    Wang, Ying
    Jiang, Luhua
    Wu, Zhijian
    Liu, Di-Jia
    Zhuang, Lin
    Ma, Chao
    Zeng, Jie
    Zhang, Bingsen
    Su, Dangsheng
    Song, Ping
    Xing, Wei
    Xu, Weilin
    Wang, Ying
    Jiang, Zheng
    Sun, Gongquan
    NATURE COMMUNICATIONS, 2017, 8
  • [8] Phosphine-functionalized graphene oxide, a high-performance electrocatalyst for oxygen reduction reaction
    Ensafi, Ali A.
    Haghighi, Mohsen Golbon
    Jafari-Asl, Mehdi
    APPLIED SURFACE SCIENCE, 2018, 427 : 722 - 729
  • [9] High-performance FeOx@CoOx/NC electrocatalysts for the oxygen reduction reaction in alkaline media
    Nasim, Fatima
    Ali, Hassan
    Nadeem, Muhammad Amtiaz
    Nadeem, Muhammad Arif
    SUSTAINABLE ENERGY & FUELS, 2022, 7 (01) : 190 - 200
  • [10] Highly active and durable Pd-Cu catalysts for oxygen reduction in alkaline exchange membrane fuel cells
    Peng, Xiong
    Omasta, Travis J.
    Roller, Justin M.
    Mustain, William E.
    FRONTIERS IN ENERGY, 2017, 11 (03) : 299 - 309