AI-BRAFV600E: A deep convolutional neural network for BRAFV600E mutation status prediction of thyroid nodules using ultrasound images

被引:2
作者
Xi, Chuang [1 ]
Du, Ruiqi [2 ]
Wang, Ren [3 ]
Wang, Yang [1 ]
Hou, Liying [1 ]
Luan, Mengqi [4 ]
Zheng, Xuan [5 ]
Huang, Hongyan [6 ]
Liang, Zhixin [7 ]
Ding, Xuehai [2 ]
Luo, Quanyong [1 ,8 ]
Shen, Chentian [1 ,8 ]
机构
[1] Shanghai Sixth Peoples Hosp Affiliated Shanghai Ji, Dept Nucl Med, Shanghai, Peoples R China
[2] Shanghai Univ, Sch Comp Engn & Sci, Shanghai, Peoples R China
[3] Shanghai Sixth Peoples Hosp Affiliated Shanghai Ji, Dept Ultrasound Med, Shanghai, Peoples R China
[4] Shanghai Jiaotong Univ Sch Med, Ruijin Hosp, Dept Ultrasound, Shanghai, Peoples R China
[5] Nanjing Med Univ, Nanjing Hosp 1, Dept Ultrasound, Nanjing, Peoples R China
[6] Guangdong Second Prov Gen Hosp, Dept Ultrasound, Guangzhou, Peoples R China
[7] Guangzhou Univ Chinese Med, Jinshazhou Hosp, Dept Nucl Med, Guangzhou, Peoples R China
[8] Shanghai Sixth Peoples Hosp Affiliated Shanghai Ji, Dept Nucl Med, 600 Yishan Rd, Shanghai 200233, Peoples R China
基金
中国国家自然科学基金;
关键词
BRAF(V600E) mutation; deep learning; thyroid cancer; thyroid nodule; ultrasound; ARTIFICIAL-INTELLIGENCE; BRAF MUTATION; CANCER; DIAGNOSIS; MODEL; ASSOCIATION; MANAGEMENT;
D O I
10.1002/VIW.20220057
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Background: The BRAF(V600E) mutation is a valuable indicator for thyroid cancer diagnosis. This study aimed to develop a deep convolutional neural network (DCNN) model based on ultrasound images to predict the BRAF(V600E) mutation status of thyroid nodules.Methods: The ultrasound images were obtained from four hospitals between January 2017 and January 2022. We trained and validated the DCNN model based on the primary set from center 1 (979 images, 528 patients). The DCNN network consists of Conv block, Downsample block, Gaussian error linear unit, Global Average Polling, and Full Connected. The predictive performance of this model was evaluated by using areas under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity in four independent test sets from center 1 to center 4 (531 images, 282 patients). Heatmaps were used to visualize the most predictive regions of each image. Specimens obtained through fine-needle aspiration or surgery were used to detect the BRAF(V600E) mutation.Results: The DCNN model achieved encouraging predictive performance by fivefold cross-validation (AUC 0.95) in the primary set. This performance was further confirmed in the independent internal test set (AUC 0.93) and three independent external test sets (AUC 0.84-0.88). The deep learning score revealed significant differences between BRAF(V600E)-mutant and BRAF(V600E)-wild-type groups (all test sets p < .001). The heatmaps visualized the most predictive region located inside or alongside the thyroid nodules.Conclusion: A DCNN model with encouraging predictive performance was developed based on ultrasound images to predict the BRAF(V600E) mutation status of thyroid nodules.
引用
收藏
页数:13
相关论文
共 40 条
  • [1] Artificial Intelligence in Cancer Research and Precision Medicine
    Bhinder, Bhavneet
    Gilvary, Coryandar
    Madhukar, Neel S.
    Elemento, Olivier
    [J]. CANCER DISCOVERY, 2021, 11 (04) : 900 - 915
  • [2] Management Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists
    Buda, Mateusz
    Wildman-Tobriner, Benjamin
    Hoang, Jenny K.
    Thayer, David
    Tessler, Franklin N.
    Middleton, William D.
    Mazurowski, Maciej A.
    [J]. RADIOLOGY, 2019, 292 (03) : 695 - 701
  • [3] Combined Spiral Transformation and Model-Driven Multi-Modal Deep Learning Scheme for Automatic Prediction of TP53 Mutation in Pancreatic Cancer
    Chen, Xiahan
    Lin, Xiaozhu
    Shen, Qing
    Qian, Xiaohua
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (02) : 735 - 747
  • [4] Interobserver and Intraobserver Variations in Ultrasound Assessment of Thyroid Nodules
    Choi, Seon Hyeong
    Kim, Eun-Kyung
    Kwak, Jin Young
    Kim, Min Jung
    Son, Eun Ju
    [J]. THYROID, 2010, 20 (02) : 167 - 172
  • [5] 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer
    Haugen, Bryan R.
    Alexander, Erik K.
    Bible, Keith C.
    Doherty, Gerard M.
    Mandel, Susan J.
    Nikiforov, Yuri E.
    Pacini, Furio
    Randolph, Gregory W.
    Sawka, Anna M.
    Schlumberger, Martin
    Schuff, Kathryn G.
    Sherman, Steven I.
    Sosa, Julie Ann
    Steward, David L.
    Tuttle, R. Michael
    Wartofsky, Leonard
    [J]. THYROID, 2016, 26 (01) : 1 - 133
  • [6] Noninvasive KRAS mutation estimation in colorectal cancer using a deep learning method based on CT imaging
    He, Kan
    Liu, Xiaoming
    Li, Mingyang
    Li, Xueyan
    Yang, Hualin
    Zhang, Huimao
    [J]. BMC MEDICAL IMAGING, 2020, 20 (01)
  • [7] Artificial intelligence in radiology
    Hosny, Ahmed
    Parmar, Chintan
    Quackenbush, John
    Schwartz, Lawrence H.
    Aerts, Hugo J. W. L.
    [J]. NATURE REVIEWS CANCER, 2018, 18 (08) : 500 - 510
  • [8] Rhabdoid Tumors Are Sensitive to the Protein-Translation Inhibitor Homoharringtonine
    Howard, Thomas P.
    Oberlick, Elaine M.
    Rees, Matthew G.
    Arnoff, Taylor E.
    Minh-Tam Pham
    Brenan, Lisa
    DoCarmo, Mariana
    Hong, Andrew L.
    Kugener, Guillaume
    Chou, Hsien-Chao
    Drosos, Yiannis
    Mathias, Kaeli M.
    Ramos, Pilar
    Seashore-Ludlow, Brinton
    Giacomelli, Andrew O.
    Wang, Xiaofeng
    Freeman, Burgess B., III
    Blankenship, Kaley
    Hoffmann, Lauren
    Tiv, Hong L.
    Gokhale, Prafulla C.
    Johannessen, Cory M.
    Stewart, Elizabeth A.
    Schreiber, Stuart L.
    Hahn, William C.
    Roberts, Charles W. M.
    [J]. CLINICAL CANCER RESEARCH, 2020, 26 (18) : 4995 - 5006
  • [9] Suspicious Ultrasound Characteristics Predict BRAFV600E-Positive Papillary Thyroid Carcinoma
    Kabaker, Adam S.
    Tublin, Mitchell E.
    Nikiforov, Yuri E.
    Armstrong, Michaele J.
    Hodak, Steven P.
    Stang, Michael T.
    McCoy, Kelly L.
    Carty, Sally E.
    Yip, Linwah
    [J]. THYROID, 2012, 22 (06) : 585 - 589
  • [10] Pan-cancer image-based detection of clinically actionable genetic alterations
    Kather, Jakob Nikolas
    Heij, Lara R.
    Grabsch, Heike I.
    Loeffler, Chiara
    Echle, Amelie
    Muti, Hannah Sophie
    Krause, Jeremias
    Niehues, Jan M.
    Sommer, Kai A. J.
    Bankhead, Peter
    Kooreman, Loes F. S.
    Schulte, Jefree J.
    Cipriani, Nicole A.
    Buelow, Roman D.
    Boor, Peter
    Ortiz-Bruechle, Nadina
    Hanby, Andrew M.
    Speirs, Valerie
    Kochanny, Sara
    Patnaik, Akash
    Srisuwananukorn, Andrew
    Brenner, Hermann
    Hoffmeister, Michael
    van den Brandt, Piet A.
    Jaeger, Dirk
    Trautwein, Christian
    Pearson, Alexander T.
    Luedde, Tom
    [J]. NATURE CANCER, 2020, 1 (08) : 789 - +