A Fair and Rational Data Sharing Strategy Toward Two-Stage Industrial Internet of Things

被引:6
作者
Zheng, Xu [1 ]
Tian, Ling [1 ,2 ]
Cai, Zhipeng [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 611731, Peoples R China
[2] Shenzhen Inst Informat Technol, Shenzhen 518172, Peoples R China
[3] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30302 USA
基金
中国国家自然科学基金;
关键词
Industrial Internet of Things; Training; Task analysis; Data models; Privacy; Differential privacy; Logistics; Data sharing; industrial IoTs; rationality; BIG DATA; PRIVACY; BLOCKCHAIN; SYSTEM;
D O I
10.1109/TII.2022.3179361
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The easy and pervasive involvement of devices in Industrial Internet of Things has greatly benefited the implementation and adoption of various smart services. One prominent prerequisite of such trends is the extensive and continuous support and sharing of data and resources among devices. However, previous efforts usually treat the data sharing as one-time task among devices, which are incapable when the data are applied for the distributed and iterative training task of machine learning models. Therefore, this article proposes a novel framework for continuous data sharing in Industrial Internet of Things. The system consists of different system owners, each brings devices and participate the distributed training of models. Specifically, system owners hold different scales of devices, data, and resources, while devices own heterogeneous availability in different time periods. In this case, the goal is to properly assign devices for qualified model training process in different rounds, such that no devices will devote unlimited resources and the overall efforts and consumptions among different owners are balanced. Accordingly, three algorithms for device allocation are proposed, based on whether the availability of devices in each training round are known at the beginning of the training procedure. The analysis shows that all algorithms can achieve a rational allocation for devices and balance the performance among system owners. Finally, evaluation results reveal that the proposed solutions outperform baseline methods in providing better data sharing plans.
引用
收藏
页码:1088 / 1096
页数:9
相关论文
共 31 条
  • [1] Deep Learning with Differential Privacy
    Abadi, Martin
    Chu, Andy
    Goodfellow, Ian
    McMahan, H. Brendan
    Mironov, Ilya
    Talwar, Kunal
    Zhang, Li
    [J]. CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, : 308 - 318
  • [2] [Anonymous], 2018, 2017 YELLOW TAXI TRI
  • [3] Trading Private Range Counting over Big IoT Data
    Cai, Zhipeng
    He, Zaobo
    [J]. 2019 39TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2019), 2019, : 144 - 153
  • [4] A Private and Efficient Mechanism for Data Uploading in Smart Cyber-Physical Systems
    Cai, Zhipeng
    Zheng, Xu
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2020, 7 (02): : 766 - 775
  • [5] Blockchains and Smart Contracts for the Internet of Things
    Christidis, Konstantinos
    Devetsikiotis, Michael
    [J]. IEEE ACCESS, 2016, 4 : 2292 - 2303
  • [6] Calibrating noise to sensitivity in private data analysis
    Dwork, Cynthia
    McSherry, Frank
    Nissim, Kobbi
    Smith, Adam
    [J]. THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2006, 3876 : 265 - 284
  • [7] The Algorithmic Foundations of Differential Privacy
    Dwork, Cynthia
    Roth, Aaron
    [J]. FOUNDATIONS AND TRENDS IN THEORETICAL COMPUTER SCIENCE, 2013, 9 (3-4): : 211 - 406
  • [8] Towards Secure Industrial IoT: Blockchain System With Credit-Based Consensus Mechanism
    Huang, Junqin
    Kong, Linghe
    Chen, Guihai
    Wu, Min-You
    Liu, Xue
    Zeng, Peng
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (06) : 3680 - 3689
  • [9] Emerging Smart Logistics and Transportation Using IoT and Blockchain
    Humayun, Mamoona
    Jhanjhi, N.Z.
    Hamid, Bushra
    Ahmed, Ghufran
    [J]. IEEE Internet of Things Magazine, 2020, 3 (02): : 58 - 62
  • [10] Federated Learning for Edge Networks: Resource Optimization and Incentive Mechanism
    Khan, Latif U.
    Pandey, Shashi Raj
    Tran, Nguyen H.
    Saad, Walid
    Han, Zhu
    Nguyen, Minh N. H.
    Hong, Choong Seon
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2020, 58 (10) : 88 - 93