High-throughput computational solvent screening for lignocellulosic biomass processing

被引:12
作者
Koenig-Mattern, Laura [1 ]
Komarova, Anastasia O. [2 ]
Ghosh, Arpa [2 ]
Linke, Steffen [1 ]
Rihko-Struckmann, Liisa K. [1 ]
Luterbacher, Jeremy [2 ]
Sundmacher, Kai [1 ,3 ]
机构
[1] Max Planck Inst Dynam Complex Tech Syst, Proc Syst Engn, Sandtorstr 1, D-39106 Magdeburg, Germany
[2] Ecole Polytech Fed Lausanne, Lab Sustainable & Catalyt Proc, Stn 6, CH-1015 Lausanne, Switzerland
[3] Otto von Guericke Univ, Chair Proc Syst Engn, Univ Pl 2, D-39106 Magdeburg, Germany
基金
瑞士国家科学基金会;
关键词
Lignocellulose; Biomass fractionation; Green solvents; Computer-aided solvent selection; COSMO-RS; DEEP EUTECTIC SOLVENTS; IONIC LIQUIDS; COSMO-RS; CELLULOSE SOLUBILITIES; MOLECULAR-WEIGHT; LIGNIN; FRACTIONATION; PREDICTION; CONVERSION; DISSOLUTION;
D O I
10.1016/j.cej.2022.139476
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Lignocellulose is one of the most promising renewable bioresources for the production of chemicals. For sustainable and competitive biorefineries, effective valorization of all biomass fractions is crucial. However, current efforts in lignocellulose fractionation are limited by the use of either toxic or suboptimal solvents that do not always allow producing clean and homogeneous streams. Here, we present a computational screening approach that covers more than 8000 solvent candidates for the processing of lignocellulosic biomass. The automated screening identified highly effective, non-intuitive solvents based on physico-chemical properties, solubilities of the biomass fractions, and environmental, health and safety properties. Solubility experiments for the lignin and cellulose fraction confirmed the applicability of the proposed framework in biomass processing. In addition to the traditional "lignin-first'' approaches, we identified solvents applicable for the complete dissolution of biomass. Furthermore, we elucidated particular structural patterns in solvents featuring high lignin solubility. The most promising solvents attained lignin solubilities of more than 33 wt%.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Natural deep eutectic solvent mediated extrusion for continuous high-solid pretreatment of lignocellulosic biomass
    Ai, Binling
    Li, Wenqi
    Woomer, Joseph
    Li, Mi
    Pu, Yunqiao
    Sheng, Zhanwu
    Zheng, Lili
    Adedeji, Akinbode
    Ragauskas, Arthur J.
    Shi, Jian
    GREEN CHEMISTRY, 2020, 22 (19) : 6372 - 6383
  • [42] High-throughput screening of 2,500 ionic liquids for sustainable furfural recovery: Bridging quantum simulations, machine learning, and experimental validation
    Darwish, Ahmad S.
    Lemaoui, Tarek
    Taher, Hanifa
    AlNashef, Inas M.
    Banat, Fawzi
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [43] Protein Preparation Automatic Protocol for High-Throughput Inverse Virtual Screening: Accelerating the Target Identification by Computational Methods
    De Vita, Simona
    Lauro, Gianluigi
    Ruggiero, Dafne
    Terracciano, Stefania
    Riccio, Raffaele
    Bifulco, Giuseppe
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (11) : 4678 - 4690
  • [44] Potential of ionic liquids as emerging green solvent for the pretreatment of lignocellulosic biomass
    Swami, Siddharth
    Suthar, Surindra
    Singh, Rajesh
    Thakur, Amit Kumar
    Gupta, Lovi Raj
    Sikarwar, Vineet Singh
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2024, 31 (09) : 12871 - 12891
  • [45] High-Throughput Analysis of Lignin by Agarose Gel Electrophoresis
    Holt, Christopher A.
    Cottyn, Betty
    Baumberger, Stephanie
    Kovacs-Schreiner, Krisztina
    Blacker, A. John
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (48) : 14297 - 14306
  • [46] Introducing curcumin biosynthesis in Arabidopsis enhances lignocellulosic biomass processing
    Oyarce, Paula
    De Meester, Barbara
    Fonseca, Fernando
    de Vries, Lisanne
    Goeminne, Geert
    Pallidis, Andreas
    De Rycke, Riet
    Tsuji, Yukiko
    Li, Yanding
    Van den Bosch, Sander
    Sels, Bert
    Ralph, John
    Vanholme, Ruben
    Boerjan, Wout
    NATURE PLANTS, 2019, 5 (02) : 225 - +
  • [47] Application of machine learning for high-throughput tumor marker screening
    Fu, Xingxing
    Ma, Wanting
    Zuo, Qi
    Qi, Yanfei
    Zhang, Shubiao
    Zhao, Yinan
    LIFE SCIENCES, 2024, 348
  • [48] High-Throughput Screening Approach for the Optoelectronic Properties of Conjugated Polymers
    Wilbraham, Liam
    Berardo, Enrico
    Turcani, Lukas
    Jelfs, Kim E.
    Zwijnenburg, Martijn A.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (12) : 2450 - 2459
  • [49] Nanomaterials in the Environment: From Materials to High-Throughput Screening to Organisms
    Thomas, Courtney R.
    George, Saji
    Horst, Allison M.
    Ji, Zhaoxia
    Miller, Robert J.
    Peralta-Videa, Jose R.
    Xia, Tian
    Pokhrel, Suman
    Maedler, Lutz
    Gardea-Torresdey, Jorge L.
    Holden, Patricia A.
    Keller, Arturo A.
    Lenihan, Hunter S.
    Nel, Andre E.
    Zink, Jeffrey I.
    ACS NANO, 2011, 5 (01) : 13 - 20
  • [50] High-throughput pKa screening and prediction amenable for ADME profiling
    Wan, Hong
    Ulander, Johan
    EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2006, 2 (01) : 139 - 155