TLDC: Tomato Leaf Disease Classification Using Deep Learning and Image Segmentation

被引:1
|
作者
Sahu, Priyanka [1 ]
Chug, Anuradha [1 ]
Singh, Amit Prakash [1 ]
Singh, Dinesh [2 ]
机构
[1] Guru Gobind Singh Indraprastha Univ, Univ Sch Informat Commun & Technol, New Delhi, India
[2] Indian Agr Res Inst, Div Plant Pathol, New Delhi, India
来源
INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 1 | 2023年 / 473卷
关键词
Convolutional neural network; Deep learning; Tomato plant; Classification; Image pre-processing; Disease inoculation;
D O I
10.1007/978-981-19-2821-5_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning (DL) has made significant progress in identifying and classifying plant diseases. The convolutional neural network (CNN) model was utilized to classify diseased and healthy tomato plant leaves for this study. Seven predominant DL models, namely LeNet 5, AlexNet, VGG19, Inception Net V3, ResNet50, DenseNet 121, and Efficient Net BO have been used for tomato leaves disease classification. Deep feature extraction and fine-tuning strategies were utilized to adapt these DL models to the specific task of classification. The obtained features using deep feature extraction were then classified by fully connected layers of the CNNs. The experiments were carried out using the image data acquired from the Indian Agricultural Research Institute, India. The dataset consists of diseased and healthy tomato leaf images with a total count of 155 images. Data augmentation was used to increase the dataset size. Furthermore, three segmentation algorithms were also applied to remove the background and highlight the deep features. In this study, a comparison of the above-mentioned CNNs has been carried out to show the accuracy results achieved on the collected dataset. The evaluation results show that deep feature extraction with image segmentation techniques produced better results (up to 100% classification accuracy) than without segmentation. The outcome of this research will have a substantial impact on tomato disease prediction and early prevention.
引用
收藏
页码:401 / 408
页数:8
相关论文
共 50 条
  • [21] Land Cover Classification Using Sematic Image Segmentation with Deep Learning
    Lee, Seonghyeok
    Kim, Jinsoo
    KOREAN JOURNAL OF REMOTE SENSING, 2019, 35 (02) : 279 - 288
  • [22] Bayesian optimized multimodal deep hybrid learning approach for tomato leaf disease classification
    Khan, Bodruzzaman
    Das, Subhabrata
    Fahim, Nafis Shahid
    Banerjee, Santanu
    Khan, Salma
    Al-Sadoon, Mohammad Khalid
    Al-Otaibi, Hamad S.
    Islam, Abu Reza Md. Towfiqul
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [23] A Tomato Leaf Diseases Classification Method Based on Deep Learning
    Jiang, Ding
    Li, Fudong
    Yang, Yuequan
    Yu, Song
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1446 - 1450
  • [24] Semantic segmentation for plant leaf disease classification and damage detection: A deep learning approach
    Polly, Roshni
    Devi, E. Anna
    SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [25] Event Image Classification using Deep Learning
    Suganthi, S. Regina Lourdhu
    Hanumanthappa, M.
    Kavitha, S.
    IEEE INTERNATIONAL CONFERENCE ON SOFT-COMPUTING AND NETWORK SECURITY (ICSNS 2018), 2018, : 99 - 106
  • [26] Modeling the Detection and Classification of Tomato Leaf Diseases Using a Robust Deep Learning Framework
    Gupta, Manish
    Yadav, Dharmveer
    Khan, Safdar Sardar
    Kumawat, Ashish Kumar
    Chourasia, Ankita
    Rane, Pinky
    Ujlayan, Anshul
    TRAITEMENT DU SIGNAL, 2024, 41 (04) : 1667 - 1678
  • [27] Automated Image Capturing System for Deep Learning-based Tomato Plant Leaf Disease Detection and Recognition
    de Luna, Robert G.
    Dadios, Elmer P.
    Bandala, Argel A.
    PROCEEDINGS OF TENCON 2018 - 2018 IEEE REGION 10 CONFERENCE, 2018, : 1414 - 1419
  • [28] Enhanced lung image segmentation using deep learning
    Gite, Shilpa
    Mishra, Abhinav
    Kotecha, Ketan
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (31) : 22839 - 22853
  • [29] Leaf disease classification with Multiple-model deep learning
    Dat Tran-Anh
    Quynh Nguyen Huu
    Thao Nguyen Thi Phuong
    Quynh Dao Thi Thuy
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 2811 - 2823
  • [30] Deep Learning for Joint Classification and Segmentation of Histopathology Image
    Park, Hyun-Cheol
    Ghimire, Raman
    Poudel, Sahadev
    Lee, Sang-Woong
    JOURNAL OF INTERNET TECHNOLOGY, 2022, 23 (04): : 903 - 910