TLDC: Tomato Leaf Disease Classification Using Deep Learning and Image Segmentation

被引:1
|
作者
Sahu, Priyanka [1 ]
Chug, Anuradha [1 ]
Singh, Amit Prakash [1 ]
Singh, Dinesh [2 ]
机构
[1] Guru Gobind Singh Indraprastha Univ, Univ Sch Informat Commun & Technol, New Delhi, India
[2] Indian Agr Res Inst, Div Plant Pathol, New Delhi, India
来源
INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 1 | 2023年 / 473卷
关键词
Convolutional neural network; Deep learning; Tomato plant; Classification; Image pre-processing; Disease inoculation;
D O I
10.1007/978-981-19-2821-5_35
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning (DL) has made significant progress in identifying and classifying plant diseases. The convolutional neural network (CNN) model was utilized to classify diseased and healthy tomato plant leaves for this study. Seven predominant DL models, namely LeNet 5, AlexNet, VGG19, Inception Net V3, ResNet50, DenseNet 121, and Efficient Net BO have been used for tomato leaves disease classification. Deep feature extraction and fine-tuning strategies were utilized to adapt these DL models to the specific task of classification. The obtained features using deep feature extraction were then classified by fully connected layers of the CNNs. The experiments were carried out using the image data acquired from the Indian Agricultural Research Institute, India. The dataset consists of diseased and healthy tomato leaf images with a total count of 155 images. Data augmentation was used to increase the dataset size. Furthermore, three segmentation algorithms were also applied to remove the background and highlight the deep features. In this study, a comparison of the above-mentioned CNNs has been carried out to show the accuracy results achieved on the collected dataset. The evaluation results show that deep feature extraction with image segmentation techniques produced better results (up to 100% classification accuracy) than without segmentation. The outcome of this research will have a substantial impact on tomato disease prediction and early prevention.
引用
收藏
页码:401 / 408
页数:8
相关论文
共 50 条
  • [11] Synergistic use of handcrafted and deep learning features for tomato leaf disease classification
    Bouni, Mohamed
    Hssina, Badr
    Douzi, Khadija
    Douzi, Samira
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [12] A Lightweight Deep Learning-Based Model for Tomato Leaf Disease Classification
    Ullah, Naeem
    Khan, Javed Ali
    Almakdi, Sultan
    Alshehri, Mohammed S.
    Al Qathrady, Mimonah
    Aldakheel, Eman Abdullah
    Khafaga, Doaa Sami
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (03): : 3969 - 3992
  • [13] Deep learning-based classification, detection, and segmentation of tomato leaf diseases: A state-of-the-art review
    Das, Aritra
    Pathan, Fahad
    Jim, Jamin Rahman
    Kabir, Md Mohsin
    Mridha, M. F.
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2025, 15 (02): : 192 - 220
  • [14] An Efficient Method for Lung Cancer Image Segmentation and Nodule Type Classification Using Deep Learning Algorithms
    Hrizi, Dorsaf
    Tbarki, Khaoula
    Elasmi, Sadok
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 5, AINA 2024, 2024, 203 : 46 - 56
  • [15] Classification of crop leaf diseases using image to image translation with deep-dream
    Sahu, Priyanka
    Chug, Anuradha
    Singh, Amit Prakash
    Singh, Dinesh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (23) : 35585 - 35619
  • [16] Classification of crop leaf diseases using image to image translation with deep-dream
    Priyanka Sahu
    Anuradha Chug
    Amit Prakash Singh
    Dinesh Singh
    Multimedia Tools and Applications, 2023, 82 : 35585 - 35619
  • [17] A Review on Deep Learning Approaches to Image Classification and Object Segmentation
    Wu, Hao
    Liu, Qi
    Liu, Xiaodong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 60 (02): : 575 - 597
  • [18] A review of the application of deep learning in medical image classification and segmentation
    Cai, Lei
    Gao, Jingyang
    Zhao, Di
    ANNALS OF TRANSLATIONAL MEDICINE, 2020, 8 (11)
  • [19] A review on lung carcinoma segmentation and classification using CT image based on deep learning
    Poonkodi S.
    Kanchana M.
    International Journal of Intelligent Systems Technologies and Applications, 2022, 20 (05) : 394 - 413
  • [20] Image Analysis of Nuclei Histopathology Using Deep Learning: A Review of Segmentation, Detection, and Classification
    Kadaskar M.
    Patil N.
    SN Computer Science, 4 (5)