Statistical and transport properties of a one-dimensional random walk with periodically distributed trapping intervals

被引:0
作者
Pozzoli, Gaia [1 ,2 ,3 ]
机构
[1] Univ Insubria, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
[2] Univ Insubria, Ctr Nonlinear & Complex Syst, Via Valleggio 11, I-22100 Como, Italy
[3] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
来源
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA | 2023年 / 16卷 / 02期
关键词
Random walk; Trapping model; Brownian motion; Survival probability; Mean-square displacement; NARROW ESCAPE; BIOLOGICAL INTERPRETATION; FRACTIONAL CALCULUS; MOBILE PARTICLES; TRANSIENT CHAOS; DIFFUSION; TIME; INVARIANT; SURVIVAL; FINANCE;
D O I
10.1007/s40574-022-00336-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following the kind invitation of the organizers of the Fourth DinAmicI Day, I gave on December, 17, 2021, a talk concerning the study of a random walk model in a trapping environment. This paper contains an extended summary of our main results. We will describe statistical and transport properties for sequences of i.i.d. jumps with finite variance in the presence of periodically distributed traps of finite size on the real line. In particular, we will emphasise connections with strongly chaotic deterministic systems and other stochastic processes.
引用
收藏
页码:275 / 295
页数:21
相关论文
共 70 条
  • [1] Chaotic Systems with Absorption
    Altmann, Eduardo G.
    Portela, Jefferson S. E.
    Tel, Tamas
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (14)
  • [2] Random walk to a nonergodic equilibrium concept
    Bel, G
    Barkai, E
    [J]. PHYSICAL REVIEW E, 2006, 73 (01):
  • [3] Weak ergodicity breaking in the continuous-time random walk
    Bel, G
    Barkai, E
    [J]. PHYSICAL REVIEW LETTERS, 2005, 94 (24)
  • [4] Benson SW., 1980, FDN CHEM KINETICS
  • [5] Length scale for the onset of Fickian diffusion in supercooled liquids
    Berthier, L
    Chandler, D
    Garrahan, JP
    [J]. EUROPHYSICS LETTERS, 2005, 69 (03): : 320 - 326
  • [6] TARGET ANNIHILATION BY RANDOM WALKERS
    BLUMEN, A
    ZUMOFEN, G
    KLAFTER, J
    [J]. PHYSICAL REVIEW B, 1984, 30 (09) : 5379 - 5382
  • [7] Home Range Estimates Vary with Sample Size and Methods
    Boyle, Sarah A.
    Lourenco, Waldete C.
    da Silva, Livia R.
    Smith, Andrew T.
    [J]. FOLIA PRIMATOLOGICA, 2009, 80 (01) : 33 - 42
  • [8] Peeping at chaos: Nondestructive monitoring of chaotic systems by measuring long-time escape rates
    Bunimovich, L. A.
    Dettmann, C. P.
    [J]. EPL, 2007, 80 (04)
  • [9] Stochastic problems in physics and astronomy
    Chandrasekhar, S
    [J]. REVIEWS OF MODERN PHYSICS, 1943, 15 (01) : 0001 - 0089
  • [10] Chernov N., 2006, Mathematical Surveys and Monographs, V127