Smart Solid-State Interphases Enable High-Safety and High-Energy Practical Lithium Batteries

被引:4
|
作者
Wu, Yu [1 ,2 ]
Liu, Yuan [1 ]
Feng, Xuning [3 ]
Ma, Zhuang [1 ,2 ]
Xu, Xiaodong [3 ]
Ren, Dongsheng [3 ]
Han, Xuebing [3 ]
Li, Yalun [3 ]
Lu, Languang [3 ]
Wang, Li [4 ]
He, Xiangming [4 ]
Ouyang, Minggao [3 ]
机构
[1] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Natl Key Lab Sci & Technol Mat Shock & Impact, Beijing 100081, Peoples R China
[3] Tsinghua Univ, State Key Lab Intelligent Green Vehicle & Mobil, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
high-energy; high-safety; practical batteries; smart; solid-state interphases; THERMAL RUNAWAY; ION BATTERY; ELECTROLYTES;
D O I
10.1002/advs.202400600
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the electrochemical performance of batteries approaching the bottleneck gradually, it is increasingly urgent to solve the safety issue. Herein, all-in-one strategy is ingeniously developed to design smart, safe, and simple (3S) practical pouch-type LiNi0.8Co0.1Mn0.1O2||Graphite@SiO (NCM811||Gr@SiO) cell, taking full advantage of liquid and solid-state electrolytes. Even under the harsh thermal abuse and high voltage condition (100 degrees C, 3-4.5 V), the pouch-type 3S NCM811||Gr@SiO cell can present superior capacity retention of 84.6% after 250 cycles (based pouch cell: 47.8% after 250 cycles). More surprisingly, the designed 3S NCM811||Gr@SiO cell can efficiently improve self-generated heat T1 by 45 degrees C, increase TR triggering temperature T2 by 40 degrees C, and decrease the TR highest T3 by 118 degrees C. These superior electrochemical and safety performances of practical 3S pouch-type cells are attributed to the robust and stable anion-induced electrode-electrolyte interphases and local solid-state electrolyte protection layer. All the fundamental findings break the conventional battery design guidelines and open up a new direction to develop practical high-performance batteries. With the electrochemical performance of batteries approaching the bottleneck gradually, it is increasingly urgent to solve the safety issue. Herein, all-in-one strategy is ingeniously developed to design smart, safe, and simple practical pouch-type cells, taking full advantage of liquid and solid-state electrolytes. All the fundamental findings open up a new direction to develop high-performance batteries. image
引用
收藏
页数:9
相关论文
共 50 条
  • [1] In-built ultraconformal interphases enable high-safety practical lithium batteries
    Wu, Yu
    Feng, Xuning
    Liu, Xiang
    Wang, Xuefeng
    Ren, Dongsheng
    Wang, Li
    Yang, Min
    Wang, Yongling
    Zhang, Weifeng
    Li, Yalun
    Zheng, Yuejiu
    Lu, Languang
    Han, Xuebing
    Xu, Gui-Liang
    Ren, Yang
    Chen, Zonghai
    Chen, Jitao
    He, Xiangming
    Amine, Khalil
    Ouyang, Minggao
    ENERGY STORAGE MATERIALS, 2021, 43 : 248 - 257
  • [2] Solid-state interphases design for high-safety, high-voltage and long-cyclability practical batteries via ethylene carbonate-free electrolytes
    Wu, Yu
    Zhang, Wenjie
    Li, Yalun
    Feng, Xuning
    Ma, Zhuang
    Ren, Dongsheng
    Lu, Languang
    Xu, Gui-Liang
    Amine, Khalil
    Ouyang, Minggao
    ENERGY STORAGE MATERIALS, 2024, 65
  • [3] High-Voltage and High-Safety Practical Lithium Batteries with Ethylene Carbonate-Free Electrolyte
    Wu, Yu
    Ren, Dongsheng
    Liu, Xiang
    Xu, Gui-Liang
    Feng, Xuning
    Zheng, Yuejiu
    Li, Yalun
    Yang, Min
    Peng, Yong
    Han, Xuebing
    Wang, Li
    Chen, Zonghai
    Ren, Yang
    Lu, Languang
    He, Xiangming
    Chen, Jitao
    Amine, Khalil
    Ouyang, Minggao
    ADVANCED ENERGY MATERIALS, 2021, 11 (47)
  • [4] Hybridizing carbonate and ether at molecular scales for high-energy and high-safety lithium metal batteries
    Chen, Jiawei
    Zhang, Daoming
    Zhu, Lei
    Liu, Mingzhu
    Zheng, Tianle
    Xu, Jie
    Li, Jun
    Wang, Fei
    Wang, Yonggang
    Dong, Xiaoli
    Xia, Yongyao
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] In Situ Polymerization Facilitating Practical High-Safety Quasi-Solid-State Batteries
    Rui, Xinyu
    Hua, Rui
    Ren, Dongsheng
    Qiu, Feng
    Wu, Yu
    Qiu, Yue
    Mao, Yuqiong
    Guo, Yi
    Zhu, Gaolong
    Liu, Xiang
    Gao, Yike
    Zhao, Chang
    Feng, Xuning
    Lu, Languang
    Ouyang, Minggao
    ADVANCED MATERIALS, 2024, 36 (27)
  • [6] Customized design of electrolytes for high-safety and high-energy-density lithium batteries
    Zhai, Fangfang
    Zhou, Qian
    Lv, Zhaolin
    Wang, Yuanyuan
    Zhou, Xinhong
    Cui, Guanglei
    ENERGYCHEM, 2022, 4 (05)
  • [7] Nonflammable Solid-State Polymer Electrolyte for High-Safety and Ultra-Stable Lithium-Ion Batteries
    Zhang, Chao
    Liu, Jingwen
    Zhang, Shenghao
    Wang, Minghui
    Lv, Qingliang
    Li, Caixia
    Wang, Lei
    BATTERIES & SUPERCAPS, 2024, 7 (07)
  • [8] Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries
    Ye, Yusheng
    Chou, Lien-Yang
    Liu, Yayuan
    Wang, Hansen
    Lee, Hiang Kwee
    Huang, Wenxiao
    Wan, Jiayu
    Liu, Kai
    Zhou, Guangmin
    Yang, Yufei
    Yang, Ankun
    Xiao, Xin
    Gao, Xin
    Boyle, David Thomas
    Chen, Hao
    Zhang, Wenbo
    Kim, Sang Cheol
    Cui, Yi
    NATURE ENERGY, 2020, 5 (10) : 786 - 793
  • [9] Sequencing polymers to enable solid-state lithium batteries
    Han, Shantao
    Wen, Peng
    Wang, Huaijiao
    Zhou, Yang
    Gu, Yu
    Zhang, Lu
    Shao-Horn, Yang
    Lin, Xinrong
    Chen, Mao
    NATURE MATERIALS, 2023, 22 (12) : 1515 - +
  • [10] Sequencing polymers to enable solid-state lithium batteries
    Han, Shantao
    Wen, Peng
    Wang, Huaijiao
    Zhou, Yang
    Gu, Yu
    Zhang, Lu
    Shao-Horn, Yang
    Lin, Xinrong
    Chen, Mao
    NATURE MATERIALS, 2023,