Comprehensive understanding of the thriving electrocatalytic nitrate/nitrite reduction to ammonia under ambient conditions

被引:21
|
作者
Zhao, Xinying [1 ]
Jiang, Yuzhuo [1 ]
Wang, Mengfan [1 ]
Huan, Yunfei [2 ]
Cheng, Qiyang [1 ]
He, Yanzheng [1 ]
Qian, Tao [2 ]
Yan, Chenglin [1 ,3 ]
机构
[1] Soochow Univ, Coll Energy, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
[2] Nantong Univ, Sch Chem & Chem Engn, Nantong 226019, Jiangsu, Peoples R China
[3] Changzhou Univ, Sch Petrochem Engn, Changzhou 213164, Jiangsu, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2024年 / 92卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Electrocatalytic nitrate reduction; Electrocatalytic nitrite reduction; Ammonia synthesis; Pollutant removal; Electrosynthesis; ELECTROCHEMICAL NITRATE REDUCTION; NITRITE REDUCTION; NITROGEN REDUCTION; ELECTROREDUCTION; ADSORPTION; CATALYSTS; GRAPHENE; ELECTROSYNTHESIS; NANOPARTICLES; ELECTRODES;
D O I
10.1016/j.jechem.2023.12.024
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Ammonia (NH3) is a multifunctional compound that is an important feedstock for the agricultural and pharmaceutical industries and attractive energy storage medium. At present, NH3 synthesis is highly dependent on the conventional Haber-Bosch process that operates under harsh conditions, which consumes large quantities of fossil fuels and releases a large amount of carbon dioxide. As an alternative, electrosynthesis is a prospective method for producing NH3 under normal temperature and pressure conditions. Although electrocatalytic nitrogen reduction to ammonia has attracted considerable attentions, the low solubility of N-2 and high N=N cracking energy render the achievements of high NH3 yield rate and Faradaic efficiency difficult. Nitrate and nitrite (NOx) are common N-containing pollutants. Due to their high solubilities and low dissociation energy of N=O, NOx are ideal raw materials for NH3 production. Therefore, electrocatalytic NOx reduction to NH3 (eNO(x)RR) is a prospective strategy to simultaneously realise environmental protection and NH3 synthesis. This review offers a comprehensive understanding of the thriving eNO(x)RR under ambient conditions. At first, the popular theory and mechanism of eNO(x)RR and a summary of the measurement system and evaluation criteria are introduced. Thereafter, various strategies for developing NOx reduction catalysts are systematically presented and discussed. Finally, the challenges and possible prospects of electrocatalytic NOx reduction are outlined to facilitate energy-saving and environmentally friendly large-scale synthesis of NH3 in the future. (C) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:459 / 483
页数:25
相关论文
共 50 条
  • [31] Recent advances in carbon-based catalysts for electrocatalytic nitrate reduction to ammonia
    Sun, Cuilian
    Xing, Xiujing
    Li, Jin
    Xiong, Wei
    Li, Hao
    CARBON LETTERS, 2024, : 1 - 19
  • [32] Critical review in electrocatalytic nitrate reduction to ammonia towards a sustainable nitrogen utilization
    Zhang, Zhiqiang
    Zhang, Nan
    Zhang, Jiao
    Deng, Beiqi
    Cao, Zhiyong
    Wang, Zuobin
    Wei, Guangfeng
    Zhang, Qingbo
    Jia, Renyong
    Xiang, Pengyu
    Xia, Siqing
    CHEMICAL ENGINEERING JOURNAL, 2024, 483
  • [33] Ammonia Synthesis via Electrochemical Nitrogen Reduction Reaction on Iron Molybdate under Ambient Conditions
    Chen, Cong
    Liu, Yang
    Yao, Yuan
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2020, 2020 (34) : 3236 - 3241
  • [34] Cu/CuxO/Graphdiyne Tandem Catalyst for Efficient Electrocatalytic Nitrate Reduction to Ammonia
    Feng, Xueting
    Liu, Jiyuan
    Kong, Ya
    Zhang, Zixuan
    Zhang, Zedong
    Li, Shuzhou
    Tong, Lianming
    Gao, Xin
    Zhang, Jin
    ADVANCED MATERIALS, 2024, 36 (44)
  • [35] Sn dendrites for electrocatalytic N2reduction to NH3under ambient conditions
    Lv, Xu
    Wang, Fengyi
    Du, Juan
    Liu, Qian
    Luo, Yongsong
    Lu, Siyu
    Chen, Guang
    Gao, Shuyan
    Zheng, Baozhan
    Sun, Xuping
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (09): : 4469 - 4472
  • [36] Electrocatalytic Reduction of Nitrate and Nitrite at CuRh Nanoparticles/C Composite Electrodes
    Mirzaei, Peyman
    Bastide, Stephane
    Aghajani, Atieh
    Bourgon, Julie
    Zlotea, Claudia
    Laurent, Michel
    Latroche, Michel
    Cachet-Vivier, Christine
    ELECTROCATALYSIS, 2018, 9 (03) : 343 - 351
  • [37] Electrocatalytic Nitrate Reduction for Sustainable Ammonia Production
    van Langevelde, Phebe H.
    Katsounaros, Ioannis
    Koper, Marc T. M.
    JOULE, 2021, 5 (02) : 290 - 294
  • [38] Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives
    Liu, Xiaolu
    Geng, Yuxiao
    Hao, Ran
    Liu, Yuping
    Yuan, Zhongyong
    Li, Wei
    PROGRESS IN CHEMISTRY, 2021, 33 (07) : 1074 - 1091
  • [39] High-efficiency electrochemical nitrite reduction to ammonium using a Cu3P nanowire array under ambient conditions
    Liang, Jie
    Deng, Biao
    Liu, Qin
    Wen, Guilai
    Liu, Qian
    Li, Tingshuai
    Luo, Yonglan
    Alshehri, Abdulmohsen Ali
    Alzahrani, Khalid Ahmed
    Ma, Dongwei
    Sun, Xuping
    GREEN CHEMISTRY, 2021, 23 (15) : 5487 - 5493
  • [40] Boron Regulated Fe Single-Atom Structures for Electrocatalytic Nitrate Reduction to Ammonia
    Lu, Xihui
    Wei, Jinshan
    Lin, Hexing
    Li, Yi
    Li, Ya-yun
    ACS APPLIED NANO MATERIALS, 2024, 7 (12) : 14654 - 14664