Carbon nanotubes-reinforced polylactic acid/hydroxyapatite porous scaffolds for bone tissue engineering

被引:2
|
作者
Lan, Weiwei [1 ]
Wang, Mingbo [2 ]
Lv, Zhenjun [1 ]
Li, Jun [1 ]
Chen, Fuying [1 ]
Liang, Ziwei [1 ,3 ]
Huang, Di [1 ,3 ]
Wei, Xiaochun [4 ]
Chen, Weiyi [1 ,3 ]
机构
[1] Taiyuan Univ Technol, Coll Biomed Engn, Res Ctr Nanobiomat & Regenerat Med, Dept Biomed Engn, Taiyuan 030024, Peoples R China
[2] Shenzhen Lando Biomat Co Ltd, Guangdong Engn Technol Res Ctr Implantable Med Pol, Shenzhen 518107, Peoples R China
[3] Shanxi Zheda Inst Adv Mat & Chem Engn, Taiyuan 030060, Peoples R China
[4] Shanxi Med Univ, Hosp 2, Dept Orthopaed, Taiyuan 030001, Peoples R China
基金
中国国家自然科学基金;
关键词
CNTs/PLA/HA scaffold; TIPS method; mechanical property; bone tissue engineering; HYDROXYAPATITE; REGENERATION; FABRICATION;
D O I
10.1007/s11706-024-0675-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the field of bone defect repair, critical requirements for favorable cytocompatibility and optimal mechanical properties have propelled research efforts towards the development of composite materials. In this study, carbon nanotubes/polylactic acid/hydroxyapatite (CNTs/PLA/HA) scaffolds with different contents (0.5, 1, 1.5 and 2 wt.%) of CNTs were prepared by the thermally induced phase separation (TIPS) method. The results revealed that the composite scaffolds had uniform pores with high porosities over 68% and high through performances. The addition of CNTs significantly enhanced the mechanical properties of resulted PLA/HA, in which the 1.5 wt.% CNTs/PLA/HA composite scaffold demonstrated the optimum mechanical behaviors with the bending elastic modulus of (868.5 +/- 12.34) MPa, the tensile elastic modulus of (209.51 +/- 12.73) MPa, and the tensile strength of (3.26 +/- 0.61) MPa. Furthermore, L929 cells on the 1.5 wt.% CNTs/PLA/HA scaffold displayed good spreading performance and favorable cytocompatibility. Therefore, it is expected that the 1.5 wt.% CNTs/PLA/HA scaffold has potential applications in bone tissue engineering.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Evaluation of Aloe Vera Coated Polylactic Acid Scaffolds for Bone Tissue Engineering
    Donate, Ricardo
    Elena Aleman-Dominguez, Maria
    Monzon, Mario
    Yu, Jianshu
    Rodriguez-Esparragon, Francisco
    Liu, Chaozong
    APPLIED SCIENCES-BASEL, 2020, 10 (07):
  • [22] In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering
    Jin, Hyeong-Ho
    Kim, Dong-Hyun
    Kim, Tae-Wan
    Shin, Keun-Koo
    Jung, Jin Sup
    Park, Hong-Chae
    Yoon, Seog-Young
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2012, 51 (05) : 1079 - 1085
  • [23] Carbon nanotubes in scaffolds for tissue engineering
    Edwards, Sharon L.
    Werkmeister, Jerome A.
    Ramshaw, John A. M.
    EXPERT REVIEW OF MEDICAL DEVICES, 2009, 6 (05) : 499 - 505
  • [24] 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering
    Turk, S.
    Altinsoy, I.
    Efe, G. Celebi
    Ipek, M.
    Ozacar, M.
    Bindal, C.
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2018, 92 : 757 - 768
  • [25] Electrospun bioactive composite scaffolds of hydroxyapatite/poly(ε-caprolactone) for bone tissue engineering
    Li Lingli
    Li Guang
    Jiang Jianming
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON ADVANCED FIBERS AND POLYMER MATERIALS, VOLS 1 AND 2, 2009, : 1291 - 1294
  • [26] Development of porous hydroxyapatite/PVA/gelatin/alginate hybrid flexible scaffolds with improved mechanical properties for bone tissue engineering
    El-Bahrawy, Nadia R.
    Elgharbawy, Hani
    Elmekawy, Ahmed
    Salem, Mohamed
    Morsy, Reda
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 319
  • [27] Porous zirconia/hydroxyapatite scaffolds for bone reconstruction
    An, Sang-Hyun
    Matsumoto, Takuya
    Miyajima, Hiroyuki
    Nakahira, Atsushi
    Kim, Kyo-Han
    Imazato, Satoshi
    DENTAL MATERIALS, 2012, 28 (12) : 1221 - 1231
  • [28] Bacterial cellulose-reinforced boron-doped hydroxyapatite/gelatin scaffolds for bone tissue engineering
    Atila, Deniz
    Karatas, Ayten
    Evcin, Atilla
    Keskin, Dilek
    Tezcaner, Aysen
    CELLULOSE, 2019, 26 (18) : 9765 - 9785
  • [29] Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering
    Yang, Wanxun
    Both, Sanne K.
    Zuo, Yi
    Birgani, Zeinab Tahmasebi
    Habibovic, Pamela
    Li, Yubao
    Jansen, John A.
    Yang, Fang
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2015, 103 (07) : 2251 - 2259
  • [30] Development and Characterization of Poly(ε-caprolactone) Reinforced Porous Hydroxyapatite for Bone Tissue Engineering
    Phanny, Yos
    Todo, Mitsugu
    BIOCERAMICS 24, 2013, 529-530 : 447 - +