Heat transfer and energy performance analysis of photovoltaic thermal system using functionalized carbon nanotubes enhanced phase change material

被引:15
|
作者
Rajamony, Reji Kumar [1 ,2 ]
Pandey, A. K. [3 ,4 ,9 ]
Samykano, M. [5 ]
Paw, Johnny Koh Siaw [1 ]
Kareri, Tareq [6 ]
Laghari, Imtiaz Ali [7 ]
Tyagi, V. V. [8 ]
机构
[1] Natl Energy Univ, Univ Tenaga Nas, Inst Sustainable Energy, Jalan Ikram Uniten, Kajang 43000, Selangor, Malaysia
[2] Lovely Profess Univ, Div Res & Dev, Phagwara 144411, Punjab, India
[3] Sunway Univ, Res Ctr Nanomat & Energy Technol RCNMET, Sch Engn & Technol, 5 Jalan Univ, Petaling Jaya 47500, Selangor Darul, Malaysia
[4] Saveetha Univ, Saveetha Inst Med & Tech Sci, Ctr Transdisciplinary Res CFTR, Chennai, India
[5] Univ Malaysia Pahang Al Sultan Abdullah, Fac Mech & Automot Engn Technol, Pekan 26600, Pahang, Malaysia
[6] Najran Univ, Coll Engn, Dept Elect Engn, Najran 11001, Saudi Arabia
[7] Quaid e Awam Univ Engn Sci & Technol, Dept Elect Engn, Larkana 77150, Pakistan
[8] Shri Mata Vaishno Devi Univ, Sch Energy Management, Katra 182320, J&K, India
[9] Uttaranchal Univ, CoE Energy & Ecosustainabil Res, Dehra Dun, India
关键词
Phase change materials; Functionalized multi-walled carbon nanotubes; Photovoltaic thermal systems; Electrical power; Heat gain; EXERGY ANALYSIS; PV/T SYSTEM; PVT; NANOFLUID; RADIATION; PANELS;
D O I
10.1016/j.applthermaleng.2024.122544
中图分类号
O414.1 [热力学];
学科分类号
摘要
The photovoltaic thermal system (PVT) is an emerging technology that simultaneously generates both electrical and thermal energy from solar energy, aiming to improve solar energy utilization. However, significant technological issues with these systems obstruct their large-scale operation. The major drawback of the cooling fluidbased PVT systems lies in operation during sun-shine hours only. To address this issue, the present research endeavors a comparative study on with and without nano-enhanced phase change materials (NePCM) integrated PVT system. In this study, the performance evaluation of four configurations was analyzed with a flow rate varying from 0.4 to 0.8 litter per minute. From this, the experimental analysis was performed on two systems, including a photovoltaic and a PVT system. The simulation was performed using TRNSYS simulation on the phase change materials integrated photovoltaic thermal system, and NePCM integrated photovoltaic thermal system. The results indicates that increasing the flow rate by 2.2 times leads to a 4.9 -fold increase in pressure drop, while the friction factor decreases with rising mass flow rate. Notably, the NePCM-integrated PVT system exhibited a substantial reduction in cell temperature and increased electrical power output at higher flow rates. At a flow rate of 0.4litter per minute, a significant heat gain was achieved with an impressive energy-saving efficiency of 75.67 %. Furthermore, the total efficiency of the PVT system, phase change materials integrated PVT system, and NePCM integrated PVT system were determined to be 81.9 %, 84.5 %, and 85.05 %, respectively. These findings underscore the potential of NePCM-integrated PVT systems for enhancing performance and expanding their practical application.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Indoor characterisation of a photovoltaic/thermal phase change material system
    Browne, Maria C.
    Lawlor, Keith
    Kelly, Adam
    Norton, Brian
    McCormack, Sarah J.
    INTERNATIONAL CONFERENCE ON SOLAR HEATING AND COOLING FOR BUILDINGS AND INDUSTRY, SHC 2014, 2015, 70 : 163 - 171
  • [32] A Portable Hybrid Photovoltaic Thermal Application: Shape-Stabilised Phase-Change Material with Metal Flakes for Enhanced Heat Transfer
    Maneechot, Pakin
    Klungsida, Nivadee
    Kueathaweekun, Thep
    Butploy, Narut
    Somnugpong, Sawet
    Khiewwan, Kanokwan
    Thongchai, Jaturong
    Tantisantisom, Khumphicha
    Ramachandran, Tholkappiyan
    Kuppusamy, Madhan
    Velmurugan, Karthikeyan
    ENERGIES, 2025, 18 (03)
  • [33] Performance prediction and optimization of a photovoltaic thermal system integrated with phase change material using response surface method
    Kazemian, Arash
    Basati, Yaser
    Khatibi, Meysam
    Ma, Tao
    JOURNAL OF CLEANER PRODUCTION, 2021, 290
  • [34] Operational and structural parametric analysis of a photovoltaic/thermal system integrated with phase change material
    Huo, Dongxin
    Zhang, Tao
    Shi, Zhengrong
    Chen, Haifei
    Li, Qifen
    Cai, Jingyong
    SOLAR ENERGY, 2024, 272
  • [35] Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges
    Kumar, R. Reji
    Samykano, M.
    Pandey, A. K.
    Kadirgama, K.
    Tyagi, V. V.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 133
  • [36] Performance enhancement of a photovoltaic module by passive cooling using phase change material in a finned container heat sink
    Wongwuttanasatian, T.
    Sarikarin, T.
    Suksri, A.
    SOLAR ENERGY, 2020, 195 : 47 - 53
  • [37] Heat transfer performance evaluation of a photovoltaic thermal with different fins in the presence of nano-encapsulated phase change materials
    Yan, Gongxing
    Zheng, Zhongbiao
    Kazemi-Varnamkhasti, Hamed
    Salahshour, Soheil
    Baghaei, Sh.
    Marzouki, Riadh
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2025, 162
  • [38] Experimental study on photovoltaic/thermal system performance based on microencapsulated phase change material slurry
    Tian, Liting
    Liu, Jianzhen
    Wu, Zhuanzhuan
    Klemes, Jiri Jaromir
    Wang, Jin
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (02) : 4494 - 4509
  • [39] Investigation of thermal performance and chemical stability of graphene enhanced phase change material for thermal energy storage
    Kumar, R. Reji
    Samykano, M.
    Ngui, W. K.
    Pandey, A. K.
    Kalidasan, B.
    Kadirgama, K.
    Tyagi, V. V.
    PHYSICS AND CHEMISTRY OF THE EARTH, 2022, 128
  • [40] Experimental evaluation of a photovoltaic thermal collector using twisted tape absorber with nano-enhanced phase change material for thermal storage
    Al-Karboly, Abdalrahman M. O.
    Ibrahim, Adnan
    Fazlizan, Ahmad
    Sopian, Kamaruzzaman
    Al-Aasam, Anwer B.
    Ishak, Muhammad Amir Aziat Bin
    Al-Waeli, Ali H. A.
    Elmnifi, Monaem
    JOURNAL OF ENERGY STORAGE, 2025, 109