Digital image analysis and artificial intelligence in pathology diagnostics-the Swiss view

被引:0
|
作者
Berezowska, Sabina [1 ]
Cathomas, Gieri [2 ]
Grobholz, Rainer [3 ,4 ]
Henkel, Maurice [5 ,6 ,7 ]
Jochum, Wolfram [8 ]
Koelzer, Viktor H. [9 ,10 ]
Kreutzfeldt, Mario [11 ,12 ]
Mertz, Kirsten D. [13 ]
Rossle, Matthias [14 ]
Soldini, Davide [15 ]
Zlobec, Inti [16 ]
Janowczyk, Andrew [17 ,18 ,19 ]
机构
[1] CHU Vaudois CHUV, Inst Univ Pathol, Rue Bugnon 25, CH-1011 Lausanne, Switzerland
[2] Univ Bern, Inst Tissue Med & Pathol, Bern, Switzerland
[3] Univ Zurich, Med Fac, Zurich, Switzerland
[4] Cantonal Hosp Aarau, Inst Pathol, Aarau, Switzerland
[5] Univ Hosp Basel, Res & Analyt Serv, Basel, Switzerland
[6] Univ Hosp Basel, Inst Radiol, Basel, Switzerland
[7] Univ Basel, Basel, Switzerland
[8] Cantonal Hosp St Gallen, Inst Pathol, St Gallen, Switzerland
[9] Univ Zurich, Dept Pathol & Mol Pathol, Zurich, Switzerland
[10] Univ Hosp Zurich, Zurich, Switzerland
[11] Univ Geneva, Dept Pathol & Immunol, Geneva, Switzerland
[12] Geneva Univ Hosp, Div Clin Pathol, Geneva, Switzerland
[13] Cantonal Hosp Baselland, Inst Pathol, Liestal, Switzerland
[14] Luzerner Kantonsspital, Pathol, Luzern 16, Switzerland
[15] Pathol Zentrum Zurich Med, Zurich, Switzerland
[16] Univ Bern, Inst Tissue Med & Pathol, Bern, Switzerland
[17] Emory Univ, Dept Biomed Engn, Atlanta, GA 30322 USA
[18] Geneva Univ Hosp, Div Precis Oncol, Dept Oncol, Geneva, Switzerland
[19] Geneva Univ Hosp, Div Clin Pathol, Dept Diagnost, Geneva, Switzerland
来源
PATHOLOGIE | 2023年 / 44卷 / 03期
关键词
Pathology; Digitalization; Image analysis; Artificial intelligence; Delphi process;
D O I
10.1007/s00292-023-01262-w
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Digital pathology (DP) is increasingly entering routine clinical pathology diagnostics. As digitization of the routine caseload advances, implementation of digital image analysis algorithms and artificial intelligence tools becomes not only attainable, but also desirable in daily sign out. The Swiss Digital Pathology Consortium (SDiPath) has initiated a Delphi process to generate best-practice recommendations for various phases of the process of digitization in pathology for the local Swiss environment, encompassing the following four topics: i) scanners, quality assurance, and validation of scans; ii) integration of scanners and systems into the pathology laboratory information system; iii) the digital workflow; and iv) digital image analysis (DIA)/artificial intelligence (AI). The current article focuses on the DIA-/AI-related recommendations generated and agreed upon by the working group and further verified by the Delphi process among the members of SDiPath. Importantly, they include the view and the currently perceived needs of practicing pathologists from multiple academic and cantonal hospitals as well as private practices.
引用
收藏
页码:222 / 224
页数:3
相关论文
共 50 条
  • [21] A survey on artificial intelligence in histopathology image analysis
    Abdelsamea, Mohammed M.
    Zidan, Usama
    Senousy, Zakaria
    Gaber, Mohamed Medhat
    Rakha, Emad
    Ilyas, Mohammad
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2022, 12 (06)
  • [22] Precision immunoprofiling by image analysis and artificial intelligence
    Viktor H. Koelzer
    Korsuk Sirinukunwattana
    Jens Rittscher
    Kirsten D. Mertz
    Virchows Archiv, 2019, 474 : 511 - 522
  • [23] Utilization of Artificial Intelligence in Automated Image Analysis
    Noboa, Nicholas S.
    Von Holle, John W.
    Brown, Paul A.
    Irvine, John M.
    2022 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, AIPR, 2022,
  • [24] Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology
    Okyaz Eminaga
    Mahmoud Abbas
    Christian Kunder
    Yuri Tolkach
    Ryan Han
    James D. Brooks
    Rosalie Nolley
    Axel Semjonow
    Martin Boegemann
    Robert West
    Jin Long
    Richard E. Fan
    Olaf Bettendorf
    Scientific Reports, 14
  • [25] Critical evaluation of artificial intelligence as a digital twin of pathologists for prostate cancer pathology
    Eminaga, Okyaz
    Abbas, Mahmoud
    Kunder, Christian
    Tolkach, Yuri
    Han, Ryan
    Brooks, James D.
    Nolley, Rosalie
    Semjonow, Axel
    Boegemann, Martin
    West, Robert
    Long, Jin
    Fan, Richard E.
    Bettendorf, Olaf
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [26] Artificial Intelligence in Digital Pathology for Bladder Cancer: Hype or Hope? A Systematic Review
    Khoraminia, Farbod
    Fuster, Saul
    Kanwal, Neel
    Olislagers, Mitchell
    Engan, Kjersti
    van Leenders, Geert J. L. H.
    Stubbs, Andrew P.
    Akram, Farhan
    Zuiverloon, Tahlita C. M.
    CANCERS, 2023, 15 (18)
  • [27] Implementation of Digital Pathology and Artificial fi cial Intelligence in Routine Pathology Practice
    Zhang, David Y.
    Venkat, Arsha
    Khasawneh, Hamdi
    Sali, Rasoul
    Zhang, Valerio
    Pei, Zhiheng
    LABORATORY INVESTIGATION, 2024, 104 (09)
  • [28] The ethical challenges of artificial intelligence-driven digital pathology
    McKay, Francis
    Williams, Bethany J.
    Prestwich, Graham
    Bansal, Daljeet
    Hallowell, Nina
    Treanor, Darren
    JOURNAL OF PATHOLOGY CLINICAL RESEARCH, 2022, 8 (03) : 209 - 216
  • [29] Artificial intelligence and digital pathology: clinical promise and deployment considerations
    Zarella, Mark D.
    Mcclintock, David S.
    Batra, Harsh
    Gullapalli, Rama R.
    Valante, Michael
    Tan, Vivian O.
    Dayal, Shubham
    Oh, Kei Shing
    Lara, Haydee
    Garcia, Chris A.
    Abels, Esther
    JOURNAL OF MEDICAL IMAGING, 2023, 10 (05)
  • [30] Integrating telepathology and digital pathology with artificial intelligence: An inevitable future
    Battazza, Alexandre
    Brasileiro, Felipe Cesar da Silva
    Tasaka, Ana Cristina
    Bulla, Camilo
    Ximenes, Pedro Pol
    Hosomi, Juliana Emi
    da Silva, Patricia Fernanda
    da Silva, Larissa Freire
    de Moura, Fernanda Barthelson Carvalho
    Rocha, Noeme Sousa
    VETERINARY WORLD, 2024, 17 (08) : 1667 - 1671