Contextualised Out-of-Distribution Detection Using Pattern Identification

被引:1
|
作者
Xu-Darme, Romain [1 ,3 ]
Girard-Satabin, Julien [1 ]
Hond, Darryl [2 ]
Incorvaia, Gabriele [2 ]
Chihani, Zakaria [1 ]
机构
[1] Univ ParisSaclay, CEA, List, F-91120 Palaiseau, France
[2] Thales UK Res Technol & Innovat, Reading, Berks, England
[3] Univ Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
来源
COMPUTER SAFETY, RELIABILITY, AND SECURITY, SAFECOMP 2023 WORKSHOPS | 2023年 / 14182卷
基金
欧盟地平线“2020”;
关键词
Out-of-distribution detection; Explainable AI; Pattern identification; NETWORKS;
D O I
10.1007/978-3-031-40953-0_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose CODE, an extension of existing work from the field of explainable AI that identifies class-specific recurring patterns to build a robust Out-of-Distribution (OoD) detection method for visual classifiers. CODE does not require any classifier retraining and is OoD-agnostic, i.e., tuned directly to the training dataset. Crucially, pattern identification allows us to provide images from the In-Distribution (ID) dataset as reference data to provide additional context to the confidence scores. In addition, we introduce a new benchmark based on perturbations of the ID dataset that provides a known and quantifiable measure of the discrepancy between the ID and OoD datasets serving as a reference value for the comparison between OoD detection methods.
引用
收藏
页码:423 / 435
页数:13
相关论文
共 50 条
  • [41] SUBSPACE MODELING FOR FAST OUT-OF-DISTRIBUTION AND ANOMALY DETECTION
    Ndiour, Ibrahima J.
    Ahuja, Nilesh A.
    Tickoo, Omesh
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3041 - 3045
  • [42] Unsupervised Out-of-Distribution Dialect Detection with Mahalanobis Distance
    Das, Sourya Dipta
    Vadi, Yash
    Unnam, Abhishek
    Yadav, Kuldeep
    INTERSPEECH 2023, 2023, : 1978 - 1982
  • [43] Runtime Monitoring for Out-of-Distribution Detection in Object Detection Neural Networks
    Hashemi, Vahid
    Kretinsky, Jan
    Rieder, Sabine
    Schmidt, Jessica
    FORMAL METHODS, FM 2023, 2023, 14000 : 622 - 634
  • [44] Inductive Conformal Out-of-distribution Detection based on Adversarial Autoencoders
    Cai, Feiyang
    Ozdagli, Ali, I
    Potteiger, Nicholas
    Koutsoukos, Xenofon
    2021 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (IEEE COINS 2021), 2021, : 90 - 95
  • [45] Out-of-distribution Detection by Quantifying the Uncertainty with the Stochastic Weight Ensemble
    Cao, Zongjing
    Li, Yan
    Shin, Byeong-Seok
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2025, 15 : 1 - 15
  • [46] Multi-Class Data Description for Out-of-distribution Detection
    Lee, Dongha
    Yu, Sehun
    Yu, Hwanjo
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 1362 - 1370
  • [47] Selecting Augmentation Methods for Domain Generalization and Out-of-Distribution Detection Using Unlabeled Data
    Kucuktas, Ulku Tuncer
    Uysal, Fatih
    Hardalac, Firat
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [48] Out-of-Distribution Detection as Support for Autonomous Driving Safety Lifecycle
    Henriksson, Jens
    Ursing, Stig
    Erdogan, Murat
    Warg, Fredrik
    Thorsen, Anders
    Jaxing, Johan
    Orsmark, Ola
    Toftas, Mathias Ortenberg
    REQUIREMENTS ENGINEERING: FOUNDATION FOR SOFTWARE QUALITY, REFSQ 2023, 2023, 13975 : 233 - 242
  • [49] Predictive uncertainty estimation for out-of-distribution detection in digital pathology
    Linmans, Jasper
    Elfwing, Stefan
    van der Laak, Jeroen
    Litjens, Geert
    MEDICAL IMAGE ANALYSIS, 2023, 83
  • [50] An Efficient Data Augmentation Network for Out-of-Distribution Image Detection
    Lin, Cheng-Hung
    Lin, Cheng-Shian
    Chou, Po-Yung
    Hsu, Chen-Chien
    IEEE ACCESS, 2021, 9 : 35313 - 35323