Contextualised Out-of-Distribution Detection Using Pattern Identification

被引:1
|
作者
Xu-Darme, Romain [1 ,3 ]
Girard-Satabin, Julien [1 ]
Hond, Darryl [2 ]
Incorvaia, Gabriele [2 ]
Chihani, Zakaria [1 ]
机构
[1] Univ ParisSaclay, CEA, List, F-91120 Palaiseau, France
[2] Thales UK Res Technol & Innovat, Reading, Berks, England
[3] Univ Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
来源
COMPUTER SAFETY, RELIABILITY, AND SECURITY, SAFECOMP 2023 WORKSHOPS | 2023年 / 14182卷
基金
欧盟地平线“2020”;
关键词
Out-of-distribution detection; Explainable AI; Pattern identification; NETWORKS;
D O I
10.1007/978-3-031-40953-0_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose CODE, an extension of existing work from the field of explainable AI that identifies class-specific recurring patterns to build a robust Out-of-Distribution (OoD) detection method for visual classifiers. CODE does not require any classifier retraining and is OoD-agnostic, i.e., tuned directly to the training dataset. Crucially, pattern identification allows us to provide images from the In-Distribution (ID) dataset as reference data to provide additional context to the confidence scores. In addition, we introduce a new benchmark based on perturbations of the ID dataset that provides a known and quantifiable measure of the discrepancy between the ID and OoD datasets serving as a reference value for the comparison between OoD detection methods.
引用
收藏
页码:423 / 435
页数:13
相关论文
共 50 条
  • [31] Optimal Parameter and Neuron Pruning for Out-of-Distribution Detection
    Chen, Chao
    Fu, Zhihang
    Liu, Kai
    Chen, Ze
    Tao, Mingyuan
    Ye, Jieping
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [32] Intra-Class Mixup for Out-of-Distribution Detection
    Ravikumar, Deepak
    Kodge, Sangamesh
    Garg, Isha
    Roy, Kaushik
    IEEE ACCESS, 2023, 11 : 25968 - 25981
  • [33] Outlier exposure with confidence control for out-of-distribution detection
    Papadopoulos, Aristotelis-Angelos
    Rajati, Mohammad Reza
    Shaikh, Nazim
    Wang, Jiamian
    NEUROCOMPUTING, 2021, 441 : 138 - 150
  • [34] Task-Agnostic Out-of-Distribution Detection Using Kernel Density Estimation
    Erdil, Ertunc
    Chaitanya, Krishna
    Karani, Neerav
    Konukoglu, Ender
    UNCERTAINTY FOR SAFE UTILIZATION OF MACHINE LEARNING IN MEDICAL IMAGING, AND PERINATAL IMAGING, PLACENTAL AND PRETERM IMAGE ANALYSIS, 2021, 12959 : 91 - 101
  • [35] Timing Performance Benchmarking of Out-of-Distribution Detection Algorithms
    Siyu Luan
    Zonghua Gu
    Amin Saremi
    Leonid Freidovich
    Lili Jiang
    Shaohua Wan
    Journal of Signal Processing Systems, 2023, 95 : 1355 - 1370
  • [36] Out-of-Distribution Detection and Radiological Data Monitoring Using Statistical Process Control
    Zamzmi, Ghada
    Venkatesh, Kesavan
    Nelson, Brandon
    Prathapan, Smriti
    Yi, Paul
    Sahiner, Berkman
    Delfino, Jana G.
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025, 38 (02): : 997 - 1015
  • [37] Timing Performance Benchmarking of Out-of-Distribution Detection Algorithms
    Luan, Siyu
    Gu, Zonghua
    Saremi, Amin
    Freidovich, Leonid
    Jiang, Lili
    Wan, Shaohua
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2023, 95 (12): : 1355 - 1370
  • [38] Diffusion models for out-of-distribution detection in digital pathology
    Linmans, Jasper
    Raya, Gabriel
    van der Laak, Jeroen
    Litjens, Geert
    MEDICAL IMAGE ANALYSIS, 2024, 93
  • [39] Out-of-distribution detection with non-semantic exploration
    Fang, Zhen
    Lu, Jie
    Zhang, Guangquan
    INFORMATION SCIENCES, 2025, 705
  • [40] Data Invariants to Understand Unsupervised Out-of-Distribution Detection
    Doorenbos, Lars
    Sznitman, Raphael
    Marquez-Neila, Pablo
    COMPUTER VISION, ECCV 2022, PT XXXI, 2022, 13691 : 133 - 150