Contextualised Out-of-Distribution Detection Using Pattern Identification

被引:1
|
作者
Xu-Darme, Romain [1 ,3 ]
Girard-Satabin, Julien [1 ]
Hond, Darryl [2 ]
Incorvaia, Gabriele [2 ]
Chihani, Zakaria [1 ]
机构
[1] Univ ParisSaclay, CEA, List, F-91120 Palaiseau, France
[2] Thales UK Res Technol & Innovat, Reading, Berks, England
[3] Univ Grenoble Alpes, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France
来源
COMPUTER SAFETY, RELIABILITY, AND SECURITY, SAFECOMP 2023 WORKSHOPS | 2023年 / 14182卷
基金
欧盟地平线“2020”;
关键词
Out-of-distribution detection; Explainable AI; Pattern identification; NETWORKS;
D O I
10.1007/978-3-031-40953-0_36
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose CODE, an extension of existing work from the field of explainable AI that identifies class-specific recurring patterns to build a robust Out-of-Distribution (OoD) detection method for visual classifiers. CODE does not require any classifier retraining and is OoD-agnostic, i.e., tuned directly to the training dataset. Crucially, pattern identification allows us to provide images from the In-Distribution (ID) dataset as reference data to provide additional context to the confidence scores. In addition, we introduce a new benchmark based on perturbations of the ID dataset that provides a known and quantifiable measure of the discrepancy between the ID and OoD datasets serving as a reference value for the comparison between OoD detection methods.
引用
收藏
页码:423 / 435
页数:13
相关论文
共 50 条
  • [1] Out-of-Distribution Detection Using Outlier Detection Methods
    Diers, Jan
    Pigorsch, Christian
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 15 - 26
  • [2] Generalized Out-of-Distribution Detection: A Survey
    Yang, Jingkang
    Zhou, Kaiyang
    Li, Yixuan
    Liu, Ziwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (12) : 5635 - 5662
  • [3] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [4] Weighted Mutual Information for Out-Of-Distribution Detection
    De Bernardi, Giacomo
    Narteni, Sara
    Cambiaso, Enrico
    Muselli, Marco
    Mongelli, Maurizio
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT III, 2023, 1903 : 318 - 331
  • [5] Exploring using jigsaw puzzles for out-of-distribution detection
    Yu, Yeonguk
    Shin, Sungho
    Ko, Minhwan
    Lee, Kyoobin
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2024, 241
  • [6] Rule-Based Out-of-Distribution Detection
    De Bernardi G.
    Narteni S.
    Cambiaso E.
    Mongelli M.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (06): : 2627 - 2637
  • [7] DICE: Leveraging Sparsification for Out-of-Distribution Detection
    Sun, Yiyou
    Li, Yixuan
    COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 : 691 - 708
  • [8] Vision-Language Dual-Pattern Matching for Out-of-Distribution Detection
    Zhang, Zihan
    Xu, Zhuo
    Xiang, Xiang
    COMPUTER VISION - ECCV 2024, PT LXXXV, 2025, 15143 : 273 - 291
  • [9] Semantic enhanced for out-of-distribution detection
    Jiang, Weijie
    Yu, Yuanlong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [10] Unsupervised evaluation for out-of-distribution detection
    Zhang, Yuhang
    Hu, Jiani
    Wen, Dongchao
    Deng, Weihong
    PATTERN RECOGNITION, 2025, 160