Polymer-based magnetoelectric scaffolds for wireless bone repair: The fillers' effect on extracellular microenvironments

被引:7
作者
Brito-Pereira, R. [1 ,2 ,3 ]
Martins, P. [1 ,2 ,4 ]
Lanceros-Mendez, S. [1 ,2 ,5 ,6 ]
Ribeiro, C. [1 ,2 ]
机构
[1] Univ Minho, Phys Ctr Minho & Porto Univ CF, P-4710057 Braga, Portugal
[2] Univ Minho, LaPMET Lab Phys Mat & Emergent Technol, P-4710057 Braga, Portugal
[3] Univ Minho, Ctr MicroElectroMech Syst CMEMS, Guimaraes, Portugal
[4] Univ Minho, IB S Inst Sci & Innovat Sustainabil, P-4710057 Braga, Portugal
[5] BCMaterials, Basque Ctr Mat Applicat & Nanostruct, UPV EHU Sci Pk, Leioa 48940, Spain
[6] Basque Fdn Sci, Ikerbasque, Bilbao 48009, Spain
关键词
Bionanotechnology; Tissue engineering; Magnetoelectrics; Biomaterials; Composites; SIZE; PARTICLES; GRAFTS;
D O I
10.1016/j.compscitech.2023.110263
中图分类号
TB33 [复合材料];
学科分类号
摘要
Replicating the natural cellular environment is a critical strategy when employing biomaterials to enhance tissue regeneration. However, effectively controlling physical cues, including electrical and mechanical stimuli, in the extracellular microenvironment to promote tissue regeneration, remains a challenging endeavor. This study presents the technological utilization of magnetoelectric (ME) composites, capable of delivering electrical and mechanical stimuli through remote activation using a magnetic field, for applications in bone-related tissue engineering. Poly(vinylidene fluoride-co-trifluoroethylene) scaffolds incorporating two types of magnetostrictive particles, namely Terfenol-D (TD) microparticles and CoFe2O4 (CFO) nanoparticles, were used to investigate the impact of mechano-electrical stimuli on preosteoblast cells. The results demonstrate that when such stimuli are applied through a custom-made magnetic bioreactor, both proliferation rate and mineralization increase. Such outcomes are dependent on the specific magnetic particles incorporated in the composite. These findings underscore the significance of designing magnetostrictive properties in ME active biomaterials to achieve successful bone regeneration. Thus, a strategy is presented to emulate the electrical and cellular microenvironment, enabling precise, controlled, and effective bone regenerative therapies.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Advancements and prospects of polymer-based hybrid composites for bone plate applications
    Kennedy, Senthil Maharaj
    Vasanthanathan, A.
    Robert, R. B. Jeen
    Amudhan, K.
    POLYMER-PLASTICS TECHNOLOGY AND MATERIALS, 2024, 63 (01): : 68 - 87
  • [42] Physiologic load-bearing characteristics of autografts, allografts, and polymer-based scaffolds in a critical sized segmental defect of long bone: an experimental study
    Amorosa, L. F.
    Lee, C. H.
    Aydemir, A. B.
    Nizami, S.
    Hsu, A.
    Patel, N. R.
    Gardner, T. R.
    Navalgund, A.
    Kim, D-G
    Park, S. H.
    Mao, J. J.
    Lee, F. Y.
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2013, 8 : 1637 - 1643
  • [43] The effect of filler permittivity on the dielectric properties of polymer-based composites
    Xie, Zilong
    Liu, Dingyao
    Xiao, Yang
    Wang, Ke
    Zhang, Qin
    Wu, Kai
    Fu, Qiang
    COMPOSITES SCIENCE AND TECHNOLOGY, 2022, 222
  • [44] Tailoring polymer-based magnetoelectrics for spintronics: Evaluating the converse effect
    Carvalho, R.
    Lanceros-Mendez, S.
    Martins, P.
    APPLIED MATERIALS TODAY, 2024, 38
  • [45] Carbon-doped inorganic nanoassemblies as fillers to tailor the dielectric and energy storage properties in polymer-based nanocomposites
    Chu, Huiying
    Fu, Chao
    Xu, Jingjing
    Li, Weiyan
    Qian, Jing
    Nie, Wei
    Ran, Xianghai
    MATERIALS & DESIGN, 2020, 188
  • [46] Mechanically active scaffolds from radio-opaque shape-memory polymer-based composites
    Cui, J.
    Kratz, K.
    Heuchel, M.
    Hiebl, B.
    Lendlein, A.
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2011, 22 (01) : 180 - 189
  • [47] Nanometer-sized extracellular matrix coating on polymer-based scaffold for tissue engineering applications
    Uchida, Noriyuki
    Sivaraman, Srikanth
    Amoroso, Nicholas J.
    Wagner, William R.
    Nishiguchi, Akihiro
    Matsusaki, Michiya
    Akashi, Mitsuru
    Nagatomi, Jiro
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2016, 104 (01) : 94 - 103
  • [48] Effect of moist environment on the diametric tensile of polymer-based dental materials
    Prylinski, Mariusz
    Prylinska-Czyzewska, Agata
    Piotrowski, Pawel
    Sobolewska, Ewa
    Fraczak, Bogumila A.
    PRZEMYSL CHEMICZNY, 2012, 91 (12): : 2444 - 2446
  • [49] Polymer-Based Bone Substitutes in Periodontal Infrabony Defects: A Systematic Evaluation of Clinical Studies
    Onisor, Florin
    Bran, Simion
    Mitre, Ileana
    Mester, Alexandru
    Voina-Tonea, Andrada
    Armencea, Gabriel
    Baciut, Mihaela
    POLYMERS, 2021, 13 (24)
  • [50] 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering
    Corcione, Carola Esposito
    Gervaso, Francesca
    Scalera, Francesca
    Montagna, Francesco
    Maiullaro, Tommaso
    Sannino, Alessandro
    Maffezzoli, Alfonso
    JOURNAL OF POLYMER ENGINEERING, 2017, 37 (08) : 741 - 746