An Ensemble Deep Learning Model for the Detection and Classification of Breast Cancer

被引:1
|
作者
Sami, Joy Christy Antony [1 ]
Arumugam, Umamakeswari [2 ]
机构
[1] SASTRA Deemed Be Univ, Sch Comp, Dept Comp Sci, Thanjavur, India
[2] SASTRA Deemed Be Univ, Sch Comp, Thanjavur, India
关键词
Biopsy; Mammography; Machine learning; Cytology; Deep learning; MAMMOGRAPHY;
D O I
10.30476/mejc.2023.97317.1857
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Detecting breast cancer in its early stages remains a significant challenge in the present context and is a leading cause of death among women, primarily due to delayed identification. This paper presents a practical and accurate approach based on deep learning to identify breast cancer in cytology images. Method: The analytical approach leverages knowledge from a related problem through a technique known as transfer learning. Convolutional neural networks (CNNs) are employed due to their remarkable performance on large datasets. Image classification architectures such as Google network (GoogleNet), Visual geographical group network (VGGNet), residual network (ResNet), and dense convolution network (DenseNet) are utilized in this approach. By applying transfer learning, the images are classified into two categories: those containing cancer cells and those without them. The performance of the proposed ensemble method is evaluated using a breast cytology image dataset. Results: The results of our proposed ensemble framework outperform conventional CNN models in terms of precision, recall, and F1 measures, achieving an impressive 86% prediction accuracy. Visual representations of validation graphs for each classifier demonstrate that the ensemble framework surpasses the performance of pre-trained CNN architectures. Conclusion: Combining the outcomes of conventional CNN architectures into an ensemble framework enhances early breast cancer detection, leading to a reduction in mortality through timely medical interventions.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [41] A Novel Deep-Learning Model for Automatic Detection and Classification of Breast Cancer Using the Transfer-Learning Technique
    Saber, Abeer
    Sakr, Mohamed
    Abo-Seida, Osama M.
    Keshk, Arabi
    Chen, Huiling
    IEEE Access, 2021, 9 : 71194 - 71209
  • [42] Enhancing Breast Cancer Detection and Classification Using Advanced Multi-Model Features and Ensemble Machine Learning Techniques
    Al Reshan, Mana Saleh
    Amin, Samina
    Zeb, Muhammad Ali
    Sulaiman, Adel
    Alshahrani, Hani
    Azar, Ahmad Taher
    Shaikh, Asadullah
    LIFE-BASEL, 2023, 13 (10):
  • [43] A Comprehensive Review on Breast Cancer Detection, Classification and Segmentation Using Deep Learning
    Barsha Abhisheka
    Saroj Kumar Biswas
    Biswajit Purkayastha
    Archives of Computational Methods in Engineering, 2023, 30 : 5023 - 5052
  • [44] A Comprehensive Review on Breast Cancer Detection, Classification and Segmentation Using Deep Learning
    Abhisheka, Barsha
    Biswas, Saroj Kumar
    Purkayastha, Biswajit
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (08) : 5023 - 5052
  • [45] Lightweight Deep Learning Pipeline for Detection, Segmentation and Classification of Breast Cancer Anomalies
    Oliveira, Hugo S.
    Teixeira, Joao F.
    Oliveira, Helder P.
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2019, PT II, 2019, 11752 : 707 - 715
  • [46] Classification of Histopathological Images for Early Detection of Breast Cancer Using Deep Learning
    Senan, Ebrahim Mohammed
    Alsaade, Fawaz Waselallah
    Al-mashhadani, Mohammed Ibrahim Ahmed
    Aldhyani, Theyazn H. H.
    Al-Adhaileh, Mosleh Hmoud
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2021, 24 (03): : 323 - 329
  • [47] Breast Cancer Classification Using Deep Learning
    Jasmir
    Nurmaini, Siti
    Malik, Reza Firsandaya
    Abidin, Dodo Zaenal
    Zarkasi, Ahmad
    Kunang, Yesi Novaria
    Firdaus
    2018 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (ICECOS), 2018, : 237 - 241
  • [48] DEEP LEARNING APPROACH FOR CLASSIFICATION OF BREAST CANCER
    Togacar, Mesut
    Ergen, Burhan
    2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP), 2018,
  • [49] Deep Learning for Breast Cancer Classification with Mammography
    Yang, Wei-Tse
    Su, Ting-Yu
    Cheng, Tsu-Chi
    He, Yi-Fei
    Fang, Yu-Hua
    INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050
  • [50] Deep Transfer Learning Driven Oral Cancer Detection and Classification Model
    Marzouk, Radwa
    Alabdulkreem, Eatedal
    Dhahbi, Sami
    Nour, Mohamed K.
    Al Duhayyim, Mesfer
    Othman, Mahmoud
    Hamza, Manar Ahmed
    Motwakel, Abdelwahed
    Yaseen, Ishfaq
    Rizwanullah, Mohammed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 3905 - 3920