An Ensemble Deep Learning Model for the Detection and Classification of Breast Cancer

被引:1
|
作者
Sami, Joy Christy Antony [1 ]
Arumugam, Umamakeswari [2 ]
机构
[1] SASTRA Deemed Be Univ, Sch Comp, Dept Comp Sci, Thanjavur, India
[2] SASTRA Deemed Be Univ, Sch Comp, Thanjavur, India
关键词
Biopsy; Mammography; Machine learning; Cytology; Deep learning; MAMMOGRAPHY;
D O I
10.30476/mejc.2023.97317.1857
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Detecting breast cancer in its early stages remains a significant challenge in the present context and is a leading cause of death among women, primarily due to delayed identification. This paper presents a practical and accurate approach based on deep learning to identify breast cancer in cytology images. Method: The analytical approach leverages knowledge from a related problem through a technique known as transfer learning. Convolutional neural networks (CNNs) are employed due to their remarkable performance on large datasets. Image classification architectures such as Google network (GoogleNet), Visual geographical group network (VGGNet), residual network (ResNet), and dense convolution network (DenseNet) are utilized in this approach. By applying transfer learning, the images are classified into two categories: those containing cancer cells and those without them. The performance of the proposed ensemble method is evaluated using a breast cytology image dataset. Results: The results of our proposed ensemble framework outperform conventional CNN models in terms of precision, recall, and F1 measures, achieving an impressive 86% prediction accuracy. Visual representations of validation graphs for each classifier demonstrate that the ensemble framework surpasses the performance of pre-trained CNN architectures. Conclusion: Combining the outcomes of conventional CNN architectures into an ensemble framework enhances early breast cancer detection, leading to a reduction in mortality through timely medical interventions.
引用
收藏
页码:40 / 51
页数:12
相关论文
共 50 条
  • [11] Ensemble Model with Deep Learning for Melanoma Classification
    Suganthi, N. Mohana
    Arun, M.
    Chitra, A.
    Rajpriya, R.
    Gayathri, B.
    Padmini, B.
    2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE COMPUTING AND SMART SYSTEMS, ICSCSS 2024, 2024, : 1541 - 1545
  • [12] Ensemble-based deep learning model for welding defect detection and classification
    Vasan, Vinod
    Sridharan, Naveen Venkatesh
    Balasundaram, Rebecca Jeyavadhanam
    Vaithiyanathan, Sugumaran
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 136
  • [13] An Efficient Automated Technique for Classification of Breast Cancer Using Deep Ensemble Model
    Rehman M.Z.U.
    Ahmad J.
    Jaha E.S.
    Ali A.M.
    Alzain M.A.
    Saeed F.
    Computer Systems Science and Engineering, 2023, 46 (01): : 897 - 911
  • [14] Deep transfer learning with fuzzy ensemble approach for the early detection of breast cancer
    Chakravarthy, S. R. Sannasi
    Bharanidharan, N.
    Kumar, V. Vinoth
    Mahesh, T. R.
    Alqahtani, Mohammed S.
    Guluwadi, Suresh
    BMC MEDICAL IMAGING, 2024, 24 (01)
  • [15] Gaussian Optimized Deep Learning-based Belief Classification Model for Breast Cancer Detection
    Malibari, Areej A.
    Obayya, Marwa
    Nour, Mohamed K.
    Mehanna, Amal S.
    Hamza, Manar Ahmed
    Zamani, Abu Sarwar
    Yaseen, Ishfaq
    Motwakel, Abdelwahed
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 4123 - 4138
  • [16] Deep ensemble learning model for cervical cancer disease classification on image dataset
    Juneja, Sonam
    Atwal, Shikha
    Goyal, Reema
    Bhati, Bhoopesh Singh
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2025, 46 (01): : 263 - 272
  • [17] Optimized Deep Learning Model for Colorectal Cancer Detection and Classification Model
    Ragab, Mahmoud
    Eljaaly, Khalid
    Sabir, Maha Farouk S.
    Ashary, Ehab Bahaudien
    Abo-Dahab, S. M.
    Khalil, E. M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (03): : 5751 - 5764
  • [18] Evolutionary Ensemble Model for Breast Cancer Classification
    Janghel, R. R.
    Shukla, Anupam
    Sharma, Sanjeev
    Gnaneswar, A. V.
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2014, PT II, 2014, 8795 : 8 - 16
  • [19] Ensemble Feature Extraction with Classification Integrated with Mask RCNN Architecture in Breast Cancer Detection Based on Deep Learning Techniques
    Prasath Alias Surendhar S.
    Kanna R.K.
    Indumathi R.
    SN Computer Science, 4 (5)
  • [20] Early predictive model for breast cancer classification using blended ensemble learning
    T. R. Mahesh
    V. Vinoth Kumar
    V. Vivek
    K. M. Karthick Raghunath
    G. Sindhu Madhuri
    International Journal of System Assurance Engineering and Management, 2024, 15 : 188 - 197