Segmentation from localization: a weakly supervised semantic segmentation method for resegmenting CAM

被引:0
作者
Jiang, Jingjing [1 ]
Wang, Hongxia [1 ]
Wu, Jiali [1 ]
Liu, Chun [1 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci & Artificial Intelligence, Wuhan 430070, Hubei, Peoples R China
关键词
Image segmentation; Weakly supervised semantic segmentation; Class activation map; Class-agnostic segmentation;
D O I
10.1007/s11042-023-17779-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Semantic segmentation has wide applications in computer vision tasks. Due to the high labor cost of pixel-level annotation, weakly supervised semantic segmentation(WSSS) methods based on image-level labels have become an important research topic. However, existing WSSS based on image-level labels has problems such as sparse segmentation results and inaccurate object boundaries. To overcome these problems, we propose a novel locate-then-segment framework that separates the localization process and segmentation process of WSSS. During the localization process we use class activation map(CAM) to locate the rough position of the object as most WSSS methods do. During the segmentation process, we focused on designing the object segmenter to refine the CAM to obtain the pseudo mask. The object segmenter consists of a dual localization feature fusion module and a boundary enhancement decoder. The former effectively extracts the semantic features of the object and finds the whole object; the latter judges long-range pixels to search for the exact object boundary. Additionally, we utilize extra pixel-level labels to train our object segmenter and add some constraints to optimize its training process. Finally, we apply the trained object segmenter to weakly supervised segmented data to improve the prediction results of CAM. Experimental results show that our proposed method significantly improves the quality of pseudo masks and obtains competitive segmentation results. Compared to existing methods, our method has the best result on the PASCAL VOC 2012 validation set with 68.8% mIoU and the competitive result on the test set with 67.9% mIoU. Our method outperforms all CNN-based methods on the MS COCO 2014 validation set, second only to transformer-based methods, achieving 36.5% mIoU. Code is available at https://github.com/wjlbnw/SegmentationFromLocalization.
引用
收藏
页码:57785 / 57810
页数:26
相关论文
共 66 条
  • [1] Learning Pixel-level Semantic Affinity with Image-level Supervision forWeakly Supervised Semantic Segmentation
    Ahn, Jiwoon
    Kwak, Suha
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4981 - 4990
  • [2] Chaudhry A, 2017, BRIT MACH VIS C 2017
  • [3] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [4] Chen Liyi, 2020, EUR C COMP VIS ECCV, P347
  • [5] Chen Tao, 2022, IEEE Transactions on Multimedia
  • [6] Bulk/Interfacial Synergetic Approaches Enable the Stable Anode for High Energy Density All- Solid-State Lithium-Sulfur Batteries
    Chen, Zirong
    Liang, Ziteng
    Zhong, Haoyue
    Su, Yu
    Wang, Kangjun
    Yang, Yong
    [J]. ACS ENERGY LETTERS, 2022, 7 (08) : 2761 - 2770
  • [7] Cheng HK, 2020, PROC CVPR IEEE, P8887, DOI 10.1109/CVPR42600.2020.00891
  • [8] Attention-Based Dropout Layer for Weakly Supervised Single Object Localization and Semantic Segmentation
    Choe, Junsuk
    Lee, Seungho
    Shim, Hyunjung
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (12) : 4256 - 4271
  • [9] BoxSup: Exploiting Bounding Boxes to Supervise Convolutional Networks for Semantic Segmentation
    Dai, Jifeng
    He, Kaiming
    Sun, Jian
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1635 - 1643
  • [10] Semantic Segmentation Refinement by Monte Carlo Region Growing of High Confidence Detections
    Dias, Philipe Ambrozio
    Medeiros, Henry
    [J]. COMPUTER VISION - ACCV 2018, PT II, 2019, 11362 : 131 - 146