PICARD'S METHOD OF SUCCESSIVE APPROXIMATION FOR FRACTIONAL ORDER INITIAL VALUE PROBLEM

被引:0
|
作者
Mohan, Jag [1 ]
Sood, Anju [1 ]
机构
[1] Sant Baba Bhag Singh Univ, Dept Phys Sci, Jalandhar, India
来源
ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES | 2023年 / 30卷 / 04期
关键词
Riemann-Liouville fractional order differential equations; Picard's method of successive approximation; initial value problem; existence; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; CALCULUS;
D O I
10.17654/0974324323019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derived Picard's successive approximation technique for fractional differential systems in which the derivative has been taken in the Riemann-Liouville sense. We investigated the existence and uniqueness results of the present method. Two numerical examples are given to show the efficiency of the presented method.
引用
收藏
页码:345 / 361
页数:17
相关论文
共 50 条
  • [21] Optimal approximation of the initial value problem
    Benouaz, T
    Arino, O
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 36 (01) : 21 - 32
  • [22] Piecewise Approximation for Bipolar Fuzzy Initial Value Problem
    Ahmady, E.
    Ahmady, N.
    Allahviranloo, T.
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2024, 20 (03) : 687 - 709
  • [23] Fuzzy fractional initial value problem
    Prakash, P.
    Nieto, J. J.
    Senthilvelavan, S.
    Priya, G. Sudha
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2015, 28 (06) : 2691 - 2704
  • [24] Positive solutions for an oscillator fractional initial value problem
    Chidouh, Amar
    Guezane-Lakoud, Assia
    Bebbouchi, Rachid
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 54 (1-2) : 57 - 68
  • [25] A note on the initial value problem of fractional evolution equations
    Chen, Pengyu
    Zhang, Xuping
    Li, Yongxiang
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [26] Existence of tube solution for a fractional initial value problem
    Neamaty, A.
    Kaffaei, P. A.
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2019, (42): : 703 - 714
  • [27] High order approximations of solutions to initial value problems for linear fractional integro-differential equations
    Ford, Neville J.
    Pedas, Arvet
    Vikerpuur, Mikk
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (05) : 2069 - 2100
  • [28] Fractional Order Nonlocal Thermistor Boundary Value Problem on Time Scales
    Alzabut, Jehad
    Khuddush, Mahammad
    Salim, Abdelkrim
    Etemad, Sina
    Rezapour, Shahram
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)
  • [29] Approximate Iterative Method for Initial Value Problem of Impulsive Fractional Differential Equations with Generalized Proportional Fractional Derivatives
    Agarwal, Ravi P.
    Hristova, Snezhana
    O'Regan, Donal
    Almeida, Ricardo
    MATHEMATICS, 2021, 9 (16)
  • [30] Study of a boundary value problem for fractional orderψ -Hilfer fractional derivative
    Harikrishnan, S.
    Shah, Kamal
    Kanagarajan, K.
    ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (03) : 589 - 596