A Babcock-Leighton dynamo model of the Sun incorporating toroidal flux loss and the helioseismically inferred meridional flow

被引:2
作者
Cloutier, S. [1 ]
Cameron, R. H. [1 ]
Gizon, L. [1 ,2 ]
机构
[1] Max Planck Inst Sonnensyst Forsch, Justus von Liebig Weg 3, D-37077 Gottingen, Germany
[2] Georg August Univ Gottingen, Inst Astrophys & Geophys, D-37077 Gottingen, Germany
关键词
Sun: magnetic fields; Sun: activity; Sun: interior; SOLAR DYNAMO; MAGNETIC-FIELDS; NONLINEAR DYNAMOS; TRANSPORT; CONSTRAINTS; OVERSHOOT; DIFFUSION; BUOYANCY; ROTATION; ENVELOPE;
D O I
10.1051/0004-6361/202347022
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Key elements of the Babcock-Leighton model for the solar dynamo are increasingly constrained by observations.Aims. We investigate whether the Babcock-Leighton flux-transport dynamo model remains in agreement with observations if the meridional flow profile is taken from helioseismic inversions. Additionally, we investigate the effect of the loss of toroidal flux through the solar surface.Methods. We employ the two-dimensional flux-transport Babcock-Leighton dynamo framework. We use the helioseismically inferred meridional flow profile, and include toroidal flux loss in a way that is consistent with the amount of poloidal flux generated by Joy's law. Our model does not impose a preference for emergences at low latitudes; however, we do require that the model produces such a preference.Results. We can find solutions that are in general agreement with observations, including the latitudinal migration of the butterfly wings and the 11 year period of the cycle. The most important free parameters in the model are the depth to which the radial turbulent pumping extends and the turbulent diffusivity in the lower half of the convection zone. We find that the pumping needs to extend to depths of about 0.80 R-circle dot and that the bulk turbulent diffusivity needs to be around 10 km(2) s(-1) or less. We find that the emergences are restricted to low latitudes without the need to impose such a preference.Conclusions. The flux-transport Babcock-Leighton model, incorporating the helioseismically inferred meridional flow and toroidal field loss term, is compatible with the properties of the observed butterfly diagram and with the observed toroidal loss rate. Reasonably tight constraints are placed on the remaining free parameters. The pumping needs to be just below the depth corresponding to the location where the meridional flow changes direction, and where numerical simulations suggest the convection zone becomes marginally subadiabatic. However, our linear model does not reproduce the observed 'rush to the poles' of the diffuse surface radial field resulting from the decay of sunspots; reproducing this might require the imposition of a preference for flux to emerge near the equator.
引用
收藏
页数:10
相关论文
共 56 条
[1]   THE TOPOLOGY OF THE SUNS MAGNETIC FIELD AND THE 22-YEAR CYCLE [J].
BABCOCK, HW .
ASTROPHYSICAL JOURNAL, 1961, 133 (02) :572-&
[2]   A two-dimensional asymptotic solution for a dynamo wave in the light of the solar internal rotation [J].
Belvedere, G ;
Kuzanyan, KM ;
Sokoloff, D .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2000, 315 (04) :778-790
[3]  
Bhm-Vitense E., 1958, ZA, V46, P108
[4]   PERSISTENT MAGNETIC WREATHS IN A RAPIDLY ROTATING SUN [J].
Brown, Benjamin P. ;
Browning, Matthew K. ;
Brun, Allan Sacha ;
Miesch, Mark S. ;
Toomre, Juri .
ASTROPHYSICAL JOURNAL, 2010, 711 (01) :424-438
[5]   Loss of toroidal magnetic flux by emergence of bipolar magnetic regions [J].
Cameron, R. H. ;
Schuessler, M. .
ASTRONOMY & ASTROPHYSICS, 2020, 636
[6]   An update of Leighton's solar dynamo model [J].
Cameron, R. H. ;
Schuessler, M. .
ASTRONOMY & ASTROPHYSICS, 2017, 599
[7]   The turbulent diffusion of toroidal magnetic flux as inferred from properties of the sunspot butterfly diagram [J].
Cameron, R. H. ;
Schuessler, M. .
ASTRONOMY & ASTROPHYSICS, 2016, 591
[8]   Surface flux evolution constraints for flux transport dynamos [J].
Cameron, R. H. ;
Schmitt, D. ;
Jiang, J. ;
Isik, E. .
ASTRONOMY & ASTROPHYSICS, 2012, 542
[9]   The crucial role of surface magnetic fields for the solar dynamo [J].
Cameron, Robert ;
Schuessler, Manfred .
SCIENCE, 2015, 347 (6228) :1333-1335
[10]   Helioseismic constraints on the structure of the solar tachocline [J].
Charbonneau, P ;
Christensen-Dalsgaard, J ;
Henning, R ;
Larsen, RM ;
Schou, J ;
Thompson, MJ ;
Tomczyk, S .
ASTROPHYSICAL JOURNAL, 1999, 527 (01) :445-460