Predicting short-term outcomes in atrial-fibrillation-related stroke using machine learning

被引:3
|
作者
Jeon, Eun-Tae [1 ]
Jung, Seung Jin [2 ]
Yeo, Tae Young [1 ]
Seo, Woo-Keun [3 ]
Jung, Jin-Man [1 ,4 ]
机构
[1] Korea Univ, Ansan Hosp, Coll Med, Dept Neurol, Ansan, South Korea
[2] Gimpo Woori Hosp, Dept Family Med, Gimpo, South Korea
[3] Sungkyunkwan Univ, Samsung Med Ctr, Dept Neurol, Sch Med, Seoul, South Korea
[4] Korea Univ, Zebrafish Translat Med Res Ctr, Ansan, South Korea
来源
FRONTIERS IN NEUROLOGY | 2023年 / 14卷
基金
新加坡国家研究基金会;
关键词
atrial fibrilation; machine learning; outcome; prediction model; ischemic stroke; BRAIN NATRIURETIC PEPTIDE; ACUTE ISCHEMIC-STROKE; PREADMISSION CHADS(2); FIBRINOGEN LEVELS; RISK; CHA(2)DS(2)-VASC; HYPERGLYCEMIA; MORTALITY; SEVERITY; SCORES;
D O I
10.3389/fneur.2023.1243700
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BackgroundPrognostic prediction and the identification of prognostic factors are critical during the early period of atrial-fibrillation (AF)-related strokes as AF is associated with poor outcomes in stroke patients.MethodsTwo independent datasets, namely, the Korean Atrial Fibrillation Evaluation Registry in Ischemic Stroke Patients (K-ATTENTION) and the Korea University Stroke Registry (KUSR), were used for internal and external validation, respectively. These datasets include common variables such as demographic, laboratory, and imaging findings during early hospitalization. Outcomes were unfavorable functional status with modified Rankin scores of 3 or higher and mortality at 3 months. We developed two machine learning models, namely, a tree-based model and a multi-layer perceptron (MLP), along with a baseline logistic regression model. The area under the receiver operating characteristic curve (AUROC) was used as the outcome metric. The Shapley additive explanation (SHAP) method was used to evaluate the contributions of variables.ResultsMachine learning models outperformed logistic regression in predicting both outcomes. For 3-month unfavorable outcomes, MLP exhibited significantly higher AUROC values of 0.890 and 0.859 in internal and external validation sets, respectively, than those of logistic regression. For 3-month mortality, both machine learning models exhibited significantly higher AUROC values than the logistic regression for internal validation but not for external validation. The most significant predictor for both outcomes was the initial National Institute of Health and Stroke Scale.ConclusionThe explainable machine learning model can reliably predict short-term outcomes and identify high-risk patients with AF-related strokes.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Atrial fibrillation and short-term outcomes after cancer-related ischemic stroke
    Wahbeh, Farah
    Zhang, Cenai
    Beyeler, Morin
    Kaiser, Jed H.
    Liao, Vanessa
    Pawar, Anokhi
    Kamel, Hooman
    Navi, Babak B.
    EUROPEAN STROKE JOURNAL, 2024,
  • [2] Long-Term Outcomes of Real-World Korean Patients with Atrial-Fibrillation-Related Stroke and Severely Decreased Ejection Fraction
    Jung, Jin-Man
    Kim, Yong-Hyun
    Yu, Sungwook
    O, Kyungmi
    Kim, Chi Kyung
    Song, Tae-Jin
    Kim, Yong-Jae
    Kim, Bum Joon
    Heo, Sung Hyuk
    Park, Kwang-Yeol
    Kim, Jeong-Min
    Park, Jong-Ho
    Choi, Jay Chol
    Park, Man-Seok
    Kim, Joon-Tae
    Choi, Kang-Ho
    Hwang, Yang-Ha
    Chung, Jong-Won
    Bang, Oh Young
    Kim, Gyeong-moon
    Seo, Woo-Keun
    JOURNAL OF CLINICAL NEUROLOGY, 2019, 15 (04): : 545 - 554
  • [3] Short-term atrial fibrillation detection using electrocardiograms: A comparison of machine learning approaches
    Jahan, Masud Shah
    Mansourvar, Marjan
    Puthusserypady, Sadasivan
    Wiil, Uffe Kock
    Peimankar, Abdolrahman
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2022, 163
  • [4] Predicting Ischemic Stroke in Patients with Atrial Fibrillation Using Machine Learning
    Jung, Seonwoo
    Song, Min-Keun
    Lee, Eunjoo
    Bae, Sejin
    Kim, Yeon-Yong
    Lee, Doheon
    Lee, Myoung Jin
    Yoo, Sunyong
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2022, 27 (03):
  • [5] The role of atrial fibrillation in the short-term outcomes of patients with acute heart failure
    Romero, Rodolfo
    Maria Gaytan, Josep
    Aguirre, Alfons
    Llorens, Pere
    Gil, Victor
    Herrero, Pablo
    Jacob, Javier
    Javier Martin-Sanchez, Francisco
    Jose Perez-Dura, Maria
    Alquezar, Aitor
    Luisa Lopez, Maria
    Roset, Alex
    Frank Peacock, W.
    Hollander, Judd E.
    Coll-Vinent, Blanca
    Miro, Oscar
    Fuentes, Marta
    Gil, Cristina
    Alonso, Hector
    Garmila, Pablo
    Javier Martin-Sanchez, F.
    Llopis Garcia, Guillermo
    Cecilia Yanez-Palma, Maria
    Iglesias Lopez, Sergio
    Gil, Victor
    Escoda, Rosa
    Xipell, Carolina
    Sanchez, Carolina
    Salvo, Eva
    Pavon, Jose
    Noval, Antonio
    Manuel Torres, Jose
    Luisa Lopez-Grima, Maria
    Valero, Amparo
    Angeles Juan, Marian
    Aguirre, Alfons
    Angels Pedragosa, Maria
    Minguez Maso, Silvia
    Isabel Alonso, Maria
    Ruiz, Francisco
    Miguel Franco, Jose
    Helen Mecina, Ana
    Tost, Josep
    Sanchez, Susana
    Carbajosa, Virginia
    Pinera, Pascual
    Sanchez Nicolas, Jose Andres
    Torres Garate, Raquel
    Alquezar, Aitor
    Alberto Rizzi, Miguel
    CLINICAL RESEARCH IN CARDIOLOGY, 2019, 108 (06) : 622 - 633
  • [6] Short- and long-term outcomes of patients with minor stroke and nonvalvular atrial fibrillation
    Duan, Chunmiao
    Wang, Shang
    Xiong, Yunyun
    Gu, Hong qiu
    Yang, Kaixuan
    Zhao, Xing-Quan
    Meng, Xia
    Wang, Yongjun
    BMC NEUROLOGY, 2023, 23 (01)
  • [7] Influence of red blood cell distribution on short-term functional outcome in patients with acute ischemic stroke and atrial fibrillation
    Tian, Wenjie
    Xia, Xiaoshuang
    Wang, Santao
    Tian, Xiaolin
    Tse, Gary
    Wei, Miaomiao
    Liu, Tong
    Li, Xin
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2018, 11 (08): : 8392 - 8401
  • [8] The role of atrial fibrillation in the short-term outcomes of patients with acute heart failure
    Rodolfo Romero
    Josep María Gaytán
    Alfons Aguirre
    Pere Llorens
    Víctor Gil
    Pablo Herrero
    Javier Jacob
    Francisco Javier Martín-Sánchez
    María José Pérez-Durá
    Aitor Alquézar
    Maria Luisa López
    Àlex Roset
    W. Frank Peacock
    Judd E. Hollander
    Blanca Coll-Vinent
    Òscar Miró
    Clinical Research in Cardiology, 2019, 108 : 622 - 633
  • [9] Short-term functional outcome of ischemic stroke in the elderly: A comparative study of atrial fibrillation and non-atrial fibrillation patients
    Mizrahi, E. H.
    Fleissig, Y.
    Arad, M.
    Adunsky, A.
    ARCHIVES OF GERONTOLOGY AND GERIATRICS, 2014, 58 (01) : 121 - 124
  • [10] Characteristics and Factors for Short-Term Functional Outcome in Stroke Patients With Atrial Fibrillation, Nationwide Retrospective Cohort Study
    Song, Tae-Jin
    Baek, In-Young
    Woo, Ho Geol
    Kim, Yong-Jae
    Chang, Younkyung
    Kim, Bum Joon
    Heo, Sung Hyuk
    Jung, Jin-Man
    Oh, Kyungmi
    Kim, Chi Kyung
    Yu, Sungwook
    Park, Kwang Yeol
    Kim, Jeong-Min
    Park, Jong-Ho
    Choi, Jay Chol
    Park, Man-Seok
    Kim, Joon-Tae
    Choi, Kang-Ho
    Hwang, Yang-Ha
    Chung, Jong-Won
    Bang, Oh Young
    Kim, Gyeong-Moon
    Seo, Woo-Keun
    FRONTIERS IN NEUROLOGY, 2019, 10