Next-Gen brain tumor classification: pioneering with deep learning and fine- tuned conditional generative adversarial networks

被引:4
作者
Asiri, Abdullah A. [1 ]
Aamir, Muhammad [2 ]
Ali, Tariq [2 ]
Shaf, Ahmad [2 ]
Irfan, Muhammad [3 ]
Mehdar, Khlood M. [4 ]
Alqhtani, Samar M. [5 ]
Alghamdi, Ali H. [6 ]
Alshamrani, Abdullah Fahad A. [7 ]
Alshehri, Osama M. [8 ]
机构
[1] Najran Univ, Radiol Sci Dept, Najran, Saudi Arabia
[2] COMSATS Univ Islamabad, Dept Comp Sci, Comp Sci, Sahiwal Campus, Sahiwal, Pakistan
[3] Najran Univ, Coll Engn, Elect Engn Dept, Najran, Saudi Arabia
[4] Najran Univ, Med Coll, Anat Dept, Najran, Saudi Arabia
[5] Najran Univ, Coll Comp Sci & Informat Syst, Dept Informat Syst, Najran, Saudi Arabia
[6] Univ Tabuk, Fac Appl Med Sci, Dept Radiol Sci, Tabuk, Saudi Arabia
[7] Taibah Univ, Coll Appl Med Sci, Dept Diagnost Radiol Technol, Madinah, Saudi Arabia
[8] Najran Univ, Fac Appl Med Sci, Dept Clin Lab Sci, Najran, Saudi Arabia
关键词
Brain tumor; Conditional generative adversarial network; Discriminator model; Generator model; Tumor classification; BREAST;
D O I
10.7717/peerj-cs.1667
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain tumor has become one of the fatal causes of death worldwide in recent years, affecting many individuals annually and resulting in loss of lives. Brain tumors are characterized by the abnormal or irregular growth of brain tissues that can spread to nearby tissues and eventually throughout the brain. Although several traditional machine learning and deep learning techniques have been developed for detecting and classifying brain tumors, they do not always provide an accurate and timely diagnosis. This study proposes a conditional generative adversarial network (CGAN) that leverages the fine-tuning of a convolutional neural network (CNN) to achieve more precise detection of brain tumors. The CGAN comprises two parts, a generator and a discriminator, whose outputs are used as inputs for fine-tuning the CNN model. The publicly available dataset of brain tumor MRI images on Kaggle was used to conduct experiments for Datasets 1 and 2. Statistical values such as precision, specificity, sensitivity, F1-score, and accuracy were used to evaluate the results. Compared to existing techniques, our proposed CGAN model achieved an accuracy value of 0.93 for Dataset 1 and 0.97 for Dataset 2.
引用
收藏
页数:23
相关论文
共 31 条
[1]   A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned [J].
Abd-Ellah, Mahmoud Khaled ;
Awad, Ali Ismail ;
Khalaf, Ashraf A. M. ;
Hamed, Hesham F. A. .
MAGNETIC RESONANCE IMAGING, 2019, 61 :300-318
[2]   Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks [J].
Ahmad, Bilal ;
Sun, Jun ;
You, Qi ;
Palade, Vasile ;
Mao, Zhongjie .
BIOMEDICINES, 2022, 10 (02)
[3]   Breast Cancer Detection in Saudi Arabian Women Using Hybrid Machine Learning on Mammographic Images [J].
Almalki, Yassir Edrees ;
Shaf, Ahmad ;
Ali, Tariq ;
Aamir, Muhammad ;
Alduraibi, Sharifa Khalid ;
Almutiri, Shoayea Mohessen ;
Irfan, Muhammad ;
Basha, Mohammad Abd Alkhalik ;
Alduraibi, Alaa Khalid ;
Alamri, Abdulrahman Manaa ;
Azam, Muhammad Zeeshan ;
Alshamrani, Khalaf ;
Alshamrani, Hassan A. .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 72 (03) :4833-4851
[4]   Magnetic resonance imaging-based brain tumor grades classification and grading via convolutional neural networks and genetic algorithms [J].
Anaraki, Amin Kabir ;
Ayati, Moosa ;
Kazemi, Foad .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2019, 39 (01) :63-74
[5]   Multi-Level Deep Generative Adversarial Networks for Brain Tumor Classification on Magnetic Resonance Images [J].
Asiri, Abdullah A. ;
Shaf, Ahmad ;
Ali, Tariq ;
Aamir, Muhammad ;
Usman, Ali ;
Irfan, Muhammad ;
Alshamrani, Hassan A. ;
Mehdar, Khlood M. ;
Alshehri, Osama M. ;
Alqhtani, Samar M. .
INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (01) :127-143
[6]   Block-Wise Neural Network for Brain Tumor Identification in Magnetic Resonance Images [J].
Asiri, Abdullah A. ;
Aamir, Muhammad ;
Shaf, Ahmad ;
Ali, Tariq ;
Zeeshan, Muhammad ;
Irfan, Muhammad ;
Alshamrani, Khalaf A. ;
Alshamrani, Hassan A. ;
Alqahtani, Fawaz F. ;
Alshehri, Ali H. D. .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03) :5735-5753
[7]   A Novel Inherited Modeling Structure of Automatic Brain Tumor Segmentation from MRI [J].
Asiri, Abdullah A. ;
Ali, Tariq ;
Shaf, Ahmad ;
Aamir, Muhammad ;
Shoaib, Muhammad ;
Irfan, Muhammad ;
Alshamrani, Hassan A. ;
Alqahtani, Fawaz F. ;
Alshehri, Osama M. .
CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02) :3983-4002
[8]   Computer-assisted frameworks for classification of liver, breast and blood neoplasias via neural networks: A survey based on medical images [J].
Brunetti, Antonio ;
Carnimeo, Leonarda ;
Trotta, Gianpaolo Francesco ;
Bevilacqua, Vitoantonio .
NEUROCOMPUTING, 2019, 335 :274-298
[9]   Generative Adversarial Networks to Synthesize Missing T1 and FLAIR MRI Sequences for Use in a Multisequence Brain Tumor Segmentation Model [J].
Conte, Gian Marco ;
Weston, Alexander D. ;
Vogelsang, David C. ;
Philbrick, Kenneth A. ;
Cai, Jason C. ;
Barbera, Maurizio ;
Sanvito, Francesco ;
Lachance, Daniel H. ;
Jenkins, Robert B. ;
Tobin, W. Oliver ;
Eckel-Passow, Jeanette E. ;
Erickson, Bradley J. .
RADIOLOGY, 2021, 299 (02) :313-323
[10]   Brain tumor classification using deep CNN features via transfer learning [J].
Deepak, S. ;
Ameer, P. M. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 111