DATA STREAM UNSUPERVISED PARTITIONING BASED ON OPTIMIZED FUZZY C-MEANS

被引:1
作者
Wang, Yuding [1 ]
Chehdi, Kacem [1 ]
Cariou, Claude [1 ]
Vozel, Benoit [1 ]
机构
[1] Univ Rennes, IETR UMR CNRS, Lannion, France
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
Data stream; unsupervised; partitioning; estimation; number of classes; fuzzy C-means; optimization;
D O I
10.1109/IGARSS52108.2023.10282864
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Data stream partitioning is an important technique in data mining to analyze data streams in real-time. In this context, lots of data stream partitioning methods have been proposed. In the state of the art, most existing methods need to specify the number of classes before partitioning and/or introduce user-defined parameters for which the parameter values may differ for different data sets. In practice, it is difficult to determine the number of classes and the parameter values. Therefore, we propose in this paper an unsupervised and non-parametric method based on the Optimized Fuzzy C-Means algorithm. It has 2 steps. First is to partition a series of data chunks and then partition the intermediate classes formed before. The performance of the proposed algorithm is evaluated and compared with the recent state-of-the-art methods on hyperspectral image data sets.
引用
收藏
页码:7265 / 7268
页数:4
相关论文
共 11 条
  • [1] Aggarwal C.C., 2003, P 29 INT C VER LARG, V29, P81, DOI DOI 10.1016/B978-012722442-8/50016-1
  • [2] Online clustering algorithms
    Barbakh, Wesam
    Fyfe, Colin
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2008, 18 (03) : 185 - 194
  • [3] FCM - THE FUZZY C-MEANS CLUSTERING-ALGORITHM
    BEZDEK, JC
    EHRLICH, R
    FULL, W
    [J]. COMPUTERS & GEOSCIENCES, 1984, 10 (2-3) : 191 - 203
  • [4] Chehdi K., 2015, J ELECTRON IMAGING, P1
  • [5] Fahy C., 2019, IEEE T BIG DATA
  • [6] Hyde R, 2015, 2015 IEEE 2ND INTERNATIONAL CONFERENCE ON CYBERNETICS (CYBCONF), P228, DOI 10.1109/CYBConf.2015.7175937
  • [7] Online Clustering of Evolving Data Streams Using a Density Grid-Based Method
    Tareq, Mustafa
    Sundararajan, Elankovan A.
    Mohd, Masnizah
    Sani, Nor Samsiah
    [J]. IEEE ACCESS, 2020, 8 : 166472 - 166490
  • [8] DATA STREAM UNSUPERVISED PARTITIONING METHOD
    Wang, Yuding
    Chehdi, Kacem
    Cariou, Claude
    Vozel, Benoit
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 413 - 416
  • [9] A Novel Streaming Data Clustering Algorithm Based on Fitness Proportionate Sharing
    Yan, Xuyang
    Jahromi, Mohammad Razeghi
    Homaifar, Abdollah
    Erol, Berat A.
    Girma, Abenezer
    Tunstel, Edward
    [J]. IEEE ACCESS, 2019, 7 (184985-185000) : 184985 - 185000
  • [10] Data Stream Clustering with Affinity Propagation
    Zhang, Xiangliang
    Furtlehner, Cyril
    Germain-Renaud, Cecile
    Sebag, Michele
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (07) : 1644 - 1656