Quantum synchronization of a single trapped-ion qubit

被引:13
作者
Zhang, Liyun [1 ,2 ,3 ]
Wang, Zhao [1 ,2 ,3 ]
Wang, Yucheng [1 ,2 ,3 ]
Zhang, Junhua [1 ,2 ,3 ]
Wu, Zhigang [1 ,2 ,3 ]
Jie, Jianwen [1 ,2 ,3 ,4 ,5 ]
Lu, Yao [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn SIQSE, Shenzhen 518055, Peoples R China
[2] Int Quantum Acad, Shenzhen 518048, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[4] Shenzhen Technol Univ, Ctr Adv Mat Diagnost Technol, Shenzhen Key Lab Ultraintense Laser & Adv Mat Tech, Shenzhen 518118, Peoples R China
[5] Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 03期
基金
美国国家科学基金会; 中国博士后科学基金; 中国国家自然科学基金;
关键词
Engineering Village;
D O I
10.1103/PhysRevResearch.5.033209
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Synchronizing a few-level quantum system is of fundamental importance to the understanding of synchronization in the deep quantum regime. Whether a two-level system, the smallest quantum system, can be synchronized has been theoretically debated for the past several years. Here, for the first time, we demonstrate that a qubit can indeed be synchronized to an external driving signal by using a trapped-ion system. By engineering fully controllable gain and damping processes, an ion qubit is locked to the driving signal and oscillates in phase. Moreover, upon tuning the parameters of the driving signal, we observe characteristic features of the Arnold tongue as well. Our measurements agree remarkably well with numerical simulations based on recent theory on qubit synchronization. By synchronizing the basic unit of quantum information, our study opens up the possibility of exploring the application of quantum synchronization to quantum information processing in the near future.
引用
收藏
页数:16
相关论文
共 48 条
  • [1] Quantum Computer Systems for Scientific Discovery
    Alexeev, Yuri
    Bacon, Dave
    Brown, Kenneth R.
    Calderbank, Robert
    Carr, Lincoln D.
    Chong, Frederic T.
    DeMarco, Brian
    Englund, Dirk
    Farhi, Edward
    Fefferman, Bill
    Gorshkov, Alexey, V
    Houck, Andrew
    Kim, Jungsang
    Kimmel, Shelby
    Lange, Michael
    Lloyd, Seth
    Lukin, Mikhail D.
    Maslov, Dmitri
    Maunz, Peter
    Monroe, Christopher
    Preskill, John
    Roetteler, Martin
    Savage, Martin J.
    Thompson, Jeff
    [J]. PRX QUANTUM, 2021, 2 (01):
  • [2] Andronov A. A., 2013, Adiwes International Series in Physics
  • [3] The "Horologium Oscillatorium" of Christian Huygens
    Bell, AE
    [J]. NATURE, 1941, 148 : 245 - 248
  • [4] Quantum limit cycles and the Rayleigh and van der Pol oscillators
    Ben Arosh, Lior
    Cross, M. C.
    Lifshitz, Ron
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [5] Algebraic theory of quantum synchronization and limit cycles under dissipation
    Buca, Berislav
    Booker, Cameron
    Jaksch, Dieter
    [J]. SCIPOST PHYSICS, 2022, 12 (03):
  • [6] Relaxation oscillations and frequency entrainment in quantum mechanics
    Chia, A.
    Kwek, L. C.
    Noh, C.
    [J]. PHYSICAL REVIEW E, 2020, 102 (04)
  • [7] Experimental Determination of PT-Symmetric Exceptional Points in a Single Trapped Ion
    Ding, Liangyu
    Shi, Kaiye
    Zhang, Qiuxin
    Shen, Danna
    Zhang, Xiang
    Zhang, Wei
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (08)
  • [8] Critical Response of a Quantum van der Pol Oscillator
    Dutta, Shovan
    Cooper, Nigel R.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (25)
  • [9] Degree of Quantumness in Quantum Synchronization
    Eneriz, H.
    Rossatto, D. Z.
    Cardenas-Lopez, F. A.
    Solano, E.
    Sanz, M.
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [10] The role of phase synchronization in memory processes
    Fell, Juergen
    Axmacher, Nikolai
    [J]. NATURE REVIEWS NEUROSCIENCE, 2011, 12 (02) : 105 - U1500