Quantum synchronization of a single trapped-ion qubit

被引:13
|
作者
Zhang, Liyun [1 ,2 ,3 ]
Wang, Zhao [1 ,2 ,3 ]
Wang, Yucheng [1 ,2 ,3 ]
Zhang, Junhua [1 ,2 ,3 ]
Wu, Zhigang [1 ,2 ,3 ]
Jie, Jianwen [1 ,2 ,3 ,4 ,5 ]
Lu, Yao [1 ,2 ,3 ]
机构
[1] Southern Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn SIQSE, Shenzhen 518055, Peoples R China
[2] Int Quantum Acad, Shenzhen 518048, Peoples R China
[3] Southern Univ Sci & Technol, Guangdong Prov Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[4] Shenzhen Technol Univ, Ctr Adv Mat Diagnost Technol, Shenzhen Key Lab Ultraintense Laser & Adv Mat Tech, Shenzhen 518118, Peoples R China
[5] Shenzhen Technol Univ, Coll Engn Phys, Shenzhen 518118, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2023年 / 5卷 / 03期
基金
中国国家自然科学基金; 中国博士后科学基金; 美国国家科学基金会;
关键词
Engineering Village;
D O I
10.1103/PhysRevResearch.5.033209
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Synchronizing a few-level quantum system is of fundamental importance to the understanding of synchronization in the deep quantum regime. Whether a two-level system, the smallest quantum system, can be synchronized has been theoretically debated for the past several years. Here, for the first time, we demonstrate that a qubit can indeed be synchronized to an external driving signal by using a trapped-ion system. By engineering fully controllable gain and damping processes, an ion qubit is locked to the driving signal and oscillates in phase. Moreover, upon tuning the parameters of the driving signal, we observe characteristic features of the Arnold tongue as well. Our measurements agree remarkably well with numerical simulations based on recent theory on qubit synchronization. By synchronizing the basic unit of quantum information, our study opens up the possibility of exploring the application of quantum synchronization to quantum information processing in the near future.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] The trapped-ion qubit tool box
    Ozeri, Roee
    CONTEMPORARY PHYSICS, 2011, 52 (06) : 531 - 550
  • [2] A Shuttle-Efficient Qubit Mapper for Trapped-Ion Quantum Computers
    Upadhyay, Suryansh
    Saki, Abdullah Ash
    Topaloglu, Rasit Onur
    Ghosh, Swaroop
    PROCEEDINGS OF THE 32ND GREAT LAKES SYMPOSIUM ON VLSI 2022, GLSVLSI 2022, 2022, : 305 - 308
  • [3] How to Wire a 1000-Qubit Trapped-Ion Quantum Computer
    Malinowski, M.
    Allcock, D. T. C.
    Ballance, C. J.
    PRX QUANTUM, 2023, 4 (04):
  • [4] Non-Hermitian CHSH* Game with a Single Trapped-Ion Qubit
    Song, Xiao
    Liu, Teng
    Bian, Ji
    Lu, Pengfei
    Liu, Yang
    Zhu, Feng
    Luo, Le
    CHINESE PHYSICS LETTERS, 2024, 41 (06)
  • [5] Encoding a qubit in a trapped-ion mechanical oscillator
    Fluhmann, C.
    Nguyen, T. L.
    Marinelli, M.
    Negnevitsky, V.
    Mehta, K.
    Home, J. P.
    NATURE, 2019, 566 (7745) : 513 - +
  • [6] Encoding a qubit in a trapped-ion mechanical oscillator
    C. Flühmann
    T. L. Nguyen
    M. Marinelli
    V. Negnevitsky
    K. Mehta
    J. P. Home
    Nature, 2019, 566 : 513 - 517
  • [7] THE TRAPPED-ION QUBIT: COHERENT CONTROL IN INFINITE-DIMENSIONAL QUANTUM SYSTEMS
    Rangan, C.
    MODERN PHYSICS LETTERS A, 2009, 24 (32) : 2565 - 2578
  • [8] Trapped-ion quantum simulator
    Wineland, D.J.
    Monroe, C.
    Itano, W.M.
    King, B.E.
    Leibfried, D.
    Myatt, C.
    Wood, C.
    Physica Scripta T, T76 : 147 - 151
  • [9] Spin correlations as a probe of quantum synchronization in trapped-ion phonon lasers
    Hush, Michael R.
    Li, Weibin
    Genway, Sam
    Lesanovsky, Igor
    Armour, Andrew D.
    PHYSICAL REVIEW A, 2015, 91 (06):
  • [10] Efficient Stabilized Two-Qubit Gates on a Trapped-Ion Quantum Computer
    Blumel, Reinhold
    Grzesiak, Nikodem
    Nguyen, Nhung H.
    Green, Alaina M.
    Li, Ming
    Maksymov, Andrii
    Linke, Norbert M.
    Nam, Yunseong
    PHYSICAL REVIEW LETTERS, 2021, 126 (22)