Learning search algorithm to solve real-world optimization problems and parameter extract of photovoltaic models
被引:4
作者:
Qu, Chiwen
论文数: 0引用数: 0
h-index: 0
机构:
Youjiang Med Univ Nationalities, Publ Hlth & Management Inst, Baise 533000, Peoples R ChinaYoujiang Med Univ Nationalities, Publ Hlth & Management Inst, Baise 533000, Peoples R China
Qu, Chiwen
[1
]
Lu, Zenghui
论文数: 0引用数: 0
h-index: 0
机构:
Youjiang Med Univ Nationalities, Publ Hlth & Management Inst, Baise 533000, Peoples R ChinaYoujiang Med Univ Nationalities, Publ Hlth & Management Inst, Baise 533000, Peoples R China
Lu, Zenghui
[1
]
Lu, Fanjing
论文数: 0引用数: 0
h-index: 0
机构:
Youjiang Med Univ Nationalities, Sch Languages & Cultures, Baise 533000, Peoples R ChinaYoujiang Med Univ Nationalities, Publ Hlth & Management Inst, Baise 533000, Peoples R China
Lu, Fanjing
[2
]
机构:
[1] Youjiang Med Univ Nationalities, Publ Hlth & Management Inst, Baise 533000, Peoples R China
[2] Youjiang Med Univ Nationalities, Sch Languages & Cultures, Baise 533000, Peoples R China
Solar energy is widely acknowledged as a promising and abundant source of clean electricity. Unfortunately, the efficiency of converting solar energy into electricity using photovoltaic (PV) systems is not yet satisfactory due to technical limitations. To improve this, it is essential to develop an accurate model that incorporates well-estimated parameters. However, the parameter identification process in the PV model is challenging due to its nonlinear and multi-modal characteristics. In this study, we propose a novel metaheuristic algorithm called the learning search algorithm (LSA) to address the parameter estimation problem in solar PV models. LSA utilizes historical experience and social information to guide the search process, thus enhancing global exploitation capability. Additionally, it improves the learning ability of the population through teaching and active learning activities based on optimal individuals, which enhances local development capability. The algorithm also incorporates a dynamic self-adaptive control factor to balance global exploration and local development capabilities. Experimental results demonstrate that our proposed LSA outperforms other comparison algorithms in terms of accuracy, convergence rate, and stability in parameter identification of PV models. Statistical tests confirm the superior efficiency and effectiveness of the LSA in parameter estimation. Moreover, our algorithm demonstrates competitive performance in solving real-world optimization problems with constraints. Overall, our study contributes to the improvement of solar energy conversion efficiency through the development of an accurate parameter estimation model using the LSA.
机构:
Hohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Peoples R China
Jiangxi Univ Sci & Technol, Jiangxi Prov Key Lab Environm Geotech Engn & Hazar, Ganzhou 341000, Peoples R China
Chuzhou Univ, Anhui Prov Int Joint Res Ctr Data Diag & Smart Mai, Chuzhou 239000, Peoples R ChinaHohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Peoples R China
Alkayem, Nizar Faisal
Cao, Maosen
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Univ Sci & Technol, Jiangxi Prov Key Lab Environm Geotech Engn & Hazar, Ganzhou 341000, Peoples R China
Hohai Univ, Dept Engn Mech, Nanjing 210098, Peoples R ChinaHohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Peoples R China
Cao, Maosen
Shen, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Peoples R ChinaHohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Peoples R China
Shen, Lei
Fu, Ronghua
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Dept Engn Mech, Nanjing 210098, Peoples R ChinaHohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Peoples R China
Fu, Ronghua
Sumarac, Dragoslav
论文数: 0引用数: 0
h-index: 0
机构:
Chuzhou Univ, Coll Civil & Architecture Engn, 23900, Chuzhou, Peoples R China
State Univ Novi Pazar, Dept Tech Sci, Vuka Karadz bb, Civil Engn, Novi Pazar 36300, SerbiaHohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Peoples R China
机构:
Hohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Peoples R China
Jiangxi Univ Sci & Technol, Jiangxi Prov Key Lab Environm Geotech Engn & Hazar, Ganzhou 341000, Peoples R China
Chuzhou Univ, Anhui Prov Int Joint Res Ctr Data Diag & Smart Mai, Chuzhou 239000, Peoples R ChinaHohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Peoples R China
Alkayem, Nizar Faisal
Cao, Maosen
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Univ Sci & Technol, Jiangxi Prov Key Lab Environm Geotech Engn & Hazar, Ganzhou 341000, Peoples R China
Hohai Univ, Dept Engn Mech, Nanjing 210098, Peoples R ChinaHohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Peoples R China
Cao, Maosen
Shen, Lei
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Peoples R ChinaHohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Peoples R China
Shen, Lei
Fu, Ronghua
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Dept Engn Mech, Nanjing 210098, Peoples R ChinaHohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Peoples R China
Fu, Ronghua
Sumarac, Dragoslav
论文数: 0引用数: 0
h-index: 0
机构:
Chuzhou Univ, Coll Civil & Architecture Engn, 23900, Chuzhou, Peoples R China
State Univ Novi Pazar, Dept Tech Sci, Vuka Karadz bb, Civil Engn, Novi Pazar 36300, SerbiaHohai Univ, Coll Civil & Transportat Engn, Nanjing 210098, Peoples R China