Asian option pricing under sub-fractional vasicek model

被引:4
作者
Tao, Lichao [1 ]
Lai, Yuefu [2 ]
Ji, Yanting [3 ]
Tao, Xiangxing [3 ]
机构
[1] Zhejiang Coll Construct, Sch Engn Cost, Hangzhou 311231, Peoples R China
[2] Zhejiang Univ Sci & Technol, Sch Informat & Elect Engn, Hangzhou 310023, Peoples R China
[3] Zhejiang Univ Sci & Technol, Dept Math & Stat, Hangzhou 310023, Peoples R China
来源
QUANTITATIVE FINANCE AND ECONOMICS | 2023年 / 7卷 / 03期
基金
中国国家自然科学基金;
关键词
sub-fractional Brownian motion; vasicek model; zero-coupon bond; Asian option pricing; BROWNIAN-MOTION; DEPENDENCE; ARBITRAGE; CALCULUS;
D O I
10.3934/QFE.2023020
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper investigates the pricing formula for geometric Asian options where the underlying asset is driven by the sub-fractional Brownian motion with interest rate satisfying the sub-fractional Vasicek model. By applying the sub-fractional Ito formula, the Black-Scholes (B-S) type Partial Differential Equations (PDE) to Asian geometric average option is derived by Delta hedging principle. Moreover, the explicit pricing formula for Asian options is obtained through converting the PDE to the Cauchy problem. Numerical experiments are conducted to test the impact of the stock price, the Hurst index, the speed of interest rate adjustment, and the volatilities and their correlation for the Asian option and the interest rate model, respectively. The results show that the main parameters such as Hurst index have a significant influence on the price of Asian options.
引用
收藏
页码:403 / 419
页数:17
相关论文
共 26 条
[1]   Sub-fractional Brownian motion and its relation to occupation times [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
STATISTICS & PROBABILITY LETTERS, 2004, 69 (04) :405-419
[2]   Long-range dependence and multifractality in the term structure of LIBOR interest rates [J].
Cajueiro, Daniel O. ;
Tabak, Benjamin M. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 373 :603-614
[3]   Arbitrage in fractional Brownian motion models [J].
Cheridito, P .
FINANCE AND STOCHASTICS, 2003, 7 (04) :533-553
[4]   Stochastic calculus for fractional Brownian motion - I. Theory [J].
Duncan, TE ;
Hu, YZ ;
Pasik-Duncan, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) :582-612
[5]  
Gen Y, 2018, J East China Normal Univ (Natural Science Edition), V3, P29, DOI [10.1016/S2077-1886(12)70002-1, DOI 10.1016/S2077-1886(12)70002-1]
[6]   LONG-TERM DEPENDENCE IN COMMON STOCK RETURNS [J].
GREENE, MT ;
FIELITZ, BD .
JOURNAL OF FINANCIAL ECONOMICS, 1977, 4 (03) :339-349
[7]  
[郭精军 Guo Jingjun], 2017, [应用数学, Mathematics Applicata], V30, P503
[8]   Fractional white noise calculus and applications to finance [J].
Hu, YZ ;
Oksendal, B .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2003, 6 (01) :1-32
[9]  
[黄文礼 Huang Wen Li], 2012, [数学学报, Acta Mathematica Sinica], V55, P219
[10]  
Hull JC, 2003, Options futures and other derivatives, P9