Largely enhanced pseudocapacitance by a facile in-situ decoration of MoS2 nanosheets with CoFe2O4 nanoparticles

被引:4
|
作者
Sharifi, Samira [1 ]
Rahimi, Kourosh [2 ]
Yazdani, Ahmad [1 ]
机构
[1] Tarbiat Modares Univ, Dept Basic Sci, Condensed Matter Phys Grp, Tehran, Iran
[2] Alzahra Univ, Fac Phys, Dept Condensed Matter Phys, Tehran 1993893973, Iran
关键词
Supercapacitor; Pseudocapacitor; MoS2; Cobalt ferrite; Two-dimensional materials; Nanocomposite; NANORODS; NANOCOMPOSITES; ELECTRODES; COMPOSITE;
D O I
10.1016/j.est.2023.108499
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Using a facile in-situ hydrothermal method, few-layer MoS2 nanosheets were decorated with CoFe2O4 nanoparticles (similar to 18 nm in size) in the presence of Ni foam. Then the CoFe2O4/MoS2 composite coated on Ni foam was studied as a supercapacitor electrode. Atomic force microscopy (AFM) shows the successful exfoliation of bulk MoS2 powder into few-layer MoS2 nanosheets. X-ray diffraction (XRD) patterns confirm the crystal structure formation of CoFe2O4/MoS2 nanostructures and transmission electron microscopy (TEM) demonstrate their morphologies. The electrochemical energy storage tests were conducted using a three-electrode setup. We found that MoS2 nanosheets considerably enhance the pseudocapacitance properties of CoFe2O4 nanoparticles, especially its specific capacitance from 500 to 1013 F/g, its power density from 125.0 to 166.6 W/kg, and its energy density from 11.1 to 22.5 Wh/kg. More importantly, we found that the incorporation of MoS2 nanosheets enhances the charge-discharge cycling stability of CoFe2O4. We also constructed a two-electrode (asymmetric) setup using the CoFe2O4/MoS2 composite coated on Ni foam as one electrode and activated carbon as the other electrode, and showed it can light up a red LED for several minutes. We also conducted some calculations in the framework of density functional theory to study how the interface of MoS2 and CoFe2O4 would help them toward better charge storage. We found that the built-in electric field developed across the interface can pull electrons from CoFe2O4 toward MoS2 for better charge redistribution, and the incorporation of MoS2 would add some energy states near the Fermi level that can increase the capacitance of CoFe2O4.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Magnetically Induced Enhanced Exchange Spring Effect in CoFe2O4/CoFe2/CoFe2O4 Films
    Negusse, Ezana
    Williams, Conrad M.
    IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (07)
  • [12] A FACILE HYDROTHERMAL SYNTHESIS OF MAGNETIC CoFe2O4 NANOPARTICLES AND PHOTOCATALYTIC PERFORMANCE
    Suwanchawalit, C.
    Somjit, V.
    DIGEST JOURNAL OF NANOMATERIALS AND BIOSTRUCTURES, 2015, 10 (02) : 705 - 713
  • [13] In-situ nano-engineering of amorphous MoS2 nanosheets with carbon dots for enhanced supercapacitor performances
    Panda, Prajnashree
    Mishra, Ranjit
    Barman, Sudip
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (12) : 17576 - 17589
  • [14] Superparamagnetic relaxation in CoFe2O4 nanoparticles
    Choi, EJ
    Ahn, Y
    Kim, S
    An, DH
    Kang, KU
    Lee, BG
    Baek, KS
    Oak, HN
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 262 (02) : L198 - L202
  • [15] MoS2/CoFe2O4 heterojunction for boosting photogenerated carrier separation and the dominant role in enhancing peroxymonosulfate activation
    Feng, Shan
    Yu, Minggao
    Xie, Taiping
    Li, Tao
    Kong, Deshun
    Yang, Junwei
    Cheng, Chunlan
    Chen, Houyang
    Wang, Jiankang
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [16] Electrochemical supercapacitor application of CoFe2O4 nanoparticles decorated over graphitic carbon nitride
    Rani, Barkha
    Nayak, Arpan Kumar
    Sahu, Niroj Kumar
    DIAMOND AND RELATED MATERIALS, 2021, 120 (120)
  • [17] Electrochemical properties of CoFe2O4 nanoparticles and its rGO composite for supercapacitor
    Rani, Barkha
    Sahu, Niroj Kumar
    DIAMOND AND RELATED MATERIALS, 2020, 108
  • [18] Hydrothermal synthesis of magnetic CoFe2O4 nanoparticles and CoFe2O4/MWCNTs nanocomposites for U and Pb removal from aqueous solutions
    Rahimi, Z.
    Sarafraz, H.
    Alahyarizadeh, Gh.
    Shirani, A. S.
    JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2018, 317 (01) : 431 - 442
  • [19] Spontaneous Decoration of Ultrasmall Pt Nanoparticles on Size-Separated MoS2 Nanosheets
    Lobo, Kenneth
    Gangaiah, Vijaya Kumar
    Alex, Chandraraj
    John, Neena S.
    Matte, H. S. S. Ramakrishna
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (56)
  • [20] Synthesis and magnetic properties of CoFe2/CoFe2O4 nanoparticles diluted in the MgO matrix
    Wang, M.
    Sun, X.
    Geng, B. Q.
    Zhang, S. T.
    Ma, Y. Q.
    MATERIALS RESEARCH BULLETIN, 2017, 95 : 9 - 16