Theoretical study of the direction of the excited-state intramolecular proton transfer of the HBS molecule

被引:3
|
作者
Zhou, Qiao [1 ]
Wang, Hongxiang [2 ]
Song, Peng [2 ]
机构
[1] Chongqing Univ Educ, Coll Math & Big Data, Chongqing 400065, Peoples R China
[2] Liaoning Univ, Dept Phys, Shenyang 110036, Peoples R China
关键词
FLUORESCENCE; DYNAMICS; SOLVENT;
D O I
10.1039/d3nj03039c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Excited-state intramolecular proton transfer (PT), an important process in photosynthesis, has been widely available for fluorescence sensors and fluorescent probes. Previously, PT dynamics in the desired direction have been controlled by simply perturbing the external hydrogen-bonding network, which can regulate their photophysical properties. However, a deep understanding of the mechanism of the direction of PT dynamics remains lacking. In this study, the fluorescent chemosensor molecule N & PRIME;-[(1E)-[5-(2,3-dihydro-1,3-benzothiazol-2-yl)yl)-6-oxocyclohexa-1,3-dien-1-yl]methylenyl]methylene]-2-hydroxybenzohydrazine (HBS) was studied theoretically in detail with a time-dependent density functional theory method. It was found that dual PT channels of HBS molecules can occur in the S-1 state. The analysis of the hydrogen bond length, the infrared vibration spectrum, and the subsequent charge redistribution also provided distinct evidence for this viewpoint. According to the analysis results of the potential energy curves, the PT process of the HBS-N-3 and HBS-N-4 configurations readily occurs in the S-1 state, which contributes to an in-depth understanding of the HBS mechanism in different directions. This study offers new routes toward regulating and designing novel fluorescent sensors.
引用
收藏
页码:16059 / 16065
页数:7
相关论文
共 50 条
  • [1] Revised the excited-state intramolecular proton transfer direction of the BTHMB molecule: A theoretical study
    Su, Xing
    Zhou, Qiao
    Li, You
    Cao, Bifa
    Li, Bo
    Zhang, Xin
    Yin, Hang
    Shi, Ying
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2021, 249
  • [2] A theoretical assignment on excited-state intramolecular proton transfer mechanism for quercetin
    Yang, Dapeng
    Yang, Guang
    Zhao, Jinfeng
    Zheng, Rui
    Wang, Yusheng
    Lv, Jian
    JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, 2017, 30 (11)
  • [3] Excited-state intramolecular proton transfer in polymers
    Tarkka, RM
    Jenekhe, SA
    ELECTRICAL, OPTICAL, AND MAGNETIC PROPERTIES OF ORGANIC SOLID STATE MATERIALS III, 1996, 413 : 97 - 102
  • [4] Modern Theoretical Approaches to Modeling the Excited-State Intramolecular Proton Transfer: An Overview
    Jankowska, Joanna
    Sobolewski, Andrzej L.
    MOLECULES, 2021, 26 (17):
  • [5] A theoretical study on the excited-state intramolecular proton transfer mechanism of 4-dimethylaminoflavonol chemosensor
    Lv, Jian
    Yang, Guang
    Jia, Min
    Zhao, Jinfeng
    Song, Xiaoyan
    Zhang, Qiaoli
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2019, 66 (01) : 49 - 55
  • [6] Excited-state intramolecular proton transfer and photoswitching in hydroxyphenyl-imidazopyridine derivatives: A theoretical study
    Omidyan, Reza
    Iravani, Maryam
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (18):
  • [7] EXCITED-STATE INTRAMOLECULAR ELECTRON TRANSFER COUPLED WITH EXCITED-STATE INTRAMOLECULAR PROTON TRANSFER IN PHOTOINDUCED ENOL TO KETO TAUTOMERIZATION
    Li, Yuanzuo
    Liu, Shasha
    Zhao, Lili
    Chen, Maodu
    Ma, Fengcai
    Ding, Yong
    JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY, 2009, 8 : 1073 - 1086
  • [8] On estimating probability of excited-state intramolecular proton transfer
    V. I. Tomin
    Optics and Spectroscopy, 2010, 108 : 714 - 719
  • [9] Excited-State Intramolecular Proton Transfer and Global Aromaticity
    Nishina, Naoko
    Mutai, Toshiki
    Aihara, Jun-ichi
    JOURNAL OF PHYSICAL CHEMISTRY A, 2017, 121 (01): : 151 - 161
  • [10] On estimating probability of excited-state intramolecular proton transfer
    Tomin, V. I.
    OPTICS AND SPECTROSCOPY, 2010, 108 (05) : 714 - 719