On [k] -Roman domination in graphs

被引:5
作者
Khalili, N. [1 ]
Amjadi, J. [1 ]
Chellali, M. [2 ]
Sheikholeslami, S. M. [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, LR, Iran
[2] Univ Blida, Dept Math, LAMDA RO Lab, Blida, Algeria
关键词
Roman domination; k]-Roman domination;
D O I
10.1080/09728600.2023.2241531
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an integer k = 1, let f be a function that assigns labels from the set {0,1, ... , k + 1} to the vertices of a simple graph G = (V, E). The active neighborhood AN(v) of a vertex v ? V(G) with respect to f is the set of all neighbors of v that are assigned non-zero values under f. A [k]-Roman dominating function ([k]-RDF) is a function f : V(G) -? {0,1, 2, ... , k + 1} such that for every vertex v ? V(G) with f(v) < k, we have S-u?N[v] f(u) = |AN(v)| + k. The weight of a [k]-RDF is the sum of its function values over the whole set of vertices, and the [k]-Roman domination number ?[kR](G) is the minimum weight of a [k]-RDF on G. In this paper we determine various bounds on the [k]-Roman domination number. In particular, we show that for any integer k = 2 every connected graph G of order n = 3, satisfies ?[kR](G) = (2k+1/4 n, and we characterize the graphs G attaining this bound. Moreover, we show that if T is a nontrivial tree, then ?[kR](T) = k? (T) + 1 for every integer k = 2 and we characterize the trees attaining the lower bound. Finally, we prove the NP-completeness of the [k]-Roman domination problem in bipartite and chordal graphs.
引用
收藏
页码:291 / 299
页数:9
相关论文
共 25 条
[1]  
Abdollahzadeh Ahangar H., 2019, ARS COMBINATORIA, V145, P173
[2]   Maximal double Roman domination in graphs [J].
Ahangar, H. Abdollahzadeh ;
Chellali, M. ;
Sheikholeslami, S. M. ;
Valenzuela-Tripodoro, J. C. .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 414
[3]   Triple Roman domination in graphs [J].
Ahangar, H. Abdollahzadeh ;
Alvarez, M. P. ;
Chellali, M. ;
Sheikholeslami, S. M. ;
Valenzuela-Tripodoro, J. C. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 391
[4]   Outer independent double Roman domination [J].
Ahangar, H. Abdollahzadeh ;
Chellali, M. ;
Sheikholeslami, S. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 364
[5]   Trees with Double Roman Domination Number Twice the Domination Number Plus Two [J].
Ahangar, H. Abdollahzadeh ;
Amjadi, J. ;
Chellali, M. ;
Nazari-Moghaddam, S. ;
Sheikholeslami, S. M. .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A3) :1081-1088
[6]   On the double Roman domination in graphs [J].
Ahangar, Hossein Abdollahzadeh ;
Chellali, Mustapha ;
Sheikholeslami, Seyed Mahmoud .
DISCRETE APPLIED MATHEMATICS, 2017, 232 :1-7
[7]   Quadruple Roman domination in graphs [J].
Amjadi, J. ;
Khalili, N. .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (03)
[8]  
Amjadi J., 2023, DISCRET MATH ALGORIT, P15
[9]   Double Roman domination [J].
Beeler, Robert A. ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE APPLIED MATHEMATICS, 2016, 211 :23-29
[10]   Varieties of Roman domination II [J].
Chellali, M. ;
Jafari Rad, N. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) :966-984