η-*-Ricci solitons and paracontact geometry

被引:0
|
作者
Sardar, Arpan [1 ]
De, Uday Chand [2 ]
Gezer, Aydin [3 ]
机构
[1] Univ Kalyani, Dept Math, Kalyani 741235, W Bengal, India
[2] Univ Calcutta, Dept Pure Math, 35 Ballygunge Circular Rd, Kolkata 700019, W Bengal, India
[3] Ataturk Univ, Dept Math, Erzurum, Turkiye
来源
JOURNAL OF ANALYSIS | 2023年 / 31卷 / 04期
关键词
eta-*-Ricci solitons; Gradient eta-*-Ricci solitons; Paracontact geometry; Para-Kenmotsu manifolds; para-Sasakian manifolds; REAL HYPERSURFACES;
D O I
10.1007/s41478-023-00620-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we classify eta-*-Ricci solitons in paracontact geometry. In particular, we characterize (2n + 1)-dimensional para-Kenmotsu manifolds having an eta-*-Ricci soliton and 3-dimensional para-Kenmotsu manifolds admitting a gradient eta-*-Ricci soliton. Next, we classify 3-dimensional para-Sasakian manifolds admitting eta-*-Ricci soliton and gradient eta-*-Ricci soliton. Finally, we construct examples to illustrate our results.
引用
收藏
页码:2861 / 2876
页数:16
相关论文
共 50 条
  • [31] Some Results on Conformal Geometry of Gradient Ricci Solitons
    Silva Filho, J. F.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (04): : 937 - 955
  • [32] THE k-ALMOST RICCI SOLITONS AND CONTACT GEOMETRY
    Ghosh, Amalendu
    Patra, Dhriti Sundar
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (01) : 161 - 174
  • [33] Some Results on Conformal Geometry of Gradient Ricci Solitons
    J. F. Silva Filho
    Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 937 - 955
  • [34] Almost Ricci solitons and K-contact geometry
    Sharma, Ramesh
    MONATSHEFTE FUR MATHEMATIK, 2014, 175 (04): : 621 - 628
  • [35] Almost quasi-Yamabe solitons and gradient almost quasi-yamabe solitons in paracontact geometry
    De, Krishnendu
    De, Uday Chand
    QUAESTIONES MATHEMATICAE, 2021, 44 (11) : 1429 - 1440
  • [36] NEW TOOLS IN FINSLER GEOMETRY: STRETCH AND RICCI SOLITONS
    Crasmareanu, Mircea
    MATHEMATICAL REPORTS, 2014, 16 (01): : 83 - 93
  • [37] Para-Ricci-Like Solitons on Riemannian Manifolds with Almost Paracontact Structure and Almost Paracomplex Structure
    Manev, Hristo
    Manev, Mancho
    MATHEMATICS, 2021, 9 (14)
  • [38] On the geometry of ζ-Ricci solitons in the nearly Kaehler 6-Sphere
    Pooja Bansal
    Rakesh Kumar
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 484 - 491
  • [39] Geometry of Indefinite Kenmotsu Manifolds as *η-Ricci-Yamabe Solitons
    Haseeb, Abdul
    Bilal, Mohd
    Chaubey, Sudhakar K.
    Khan, Mohammad Nazrul Islam
    AXIOMS, 2022, 11 (09)
  • [40] Addendum To: Almost Ricci solitons and K-contact geometry
    Sharma, Ramesh
    JOURNAL OF GEOMETRY, 2022, 113 (01)