U-Net: A deep-learning method for improving summer precipitation forecasts in China

被引:11
作者
Deng, Qimin [1 ]
Lu, Peirong [1 ]
Zhao, Shuyun [1 ]
Yuan, Naiming [2 ]
机构
[1] China Univ Geosci, CUG Joint Ctr Severe Weather & Climate & Hydrogeol, Dept Atmospher Sci, CMA, Wuhan, Peoples R China
[2] Sun Yat sen Univ, Sch Atmospher Sci, Zhuhai, Peoples R China
关键词
Summer precipitation; U-Net; Subseasonal forecast; Deep learning; SEASONAL PREDICTION; SOIL-MOISTURE; MONSOON;
D O I
10.1016/j.aosl.2022.100322
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A deep-learning method named U-Net was applied to improve the skill in forecasting summer (June-August) precipitation for at a one-month lead during the period 1981-2020 in China. The variables of geopotential height, soil moisture, sea level pressure, sea surface temperature, ocean salinity, and snow were considered as the model input to revise the seasonal prediction of the Climate Forecast System, version 2 (CFSv2). Results showed that on average U-Net reduced the root-mean-square error of the original CFSv2 prediction by 49.7% and 42.7% for the validation and testing set, respectively. The most improved areas were Northwest, Southwest, and Southeast China. The anomaly same sign percentages and temporal and spatial correlation coefficients did not present significant improvement but maintained the comparable performances of CFSv2. Sensitivity experiments showed that soil moisture is the most crucial factor in predicting summer rainfall in China, followed by geopotential height. Due to its advantages in handling small training dataset sizes, U-Net is a promising deep-learning method for seasonal rainfall prediction.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Soil Moisture-Precipitation Feedback Processes in the Indian Summer Monsoon Season [J].
Asharaf, Shakeel ;
Dobler, Andreas ;
Ahrens, Bodo .
JOURNAL OF HYDROMETEOROLOGY, 2012, 13 (05) :1461-1474
[2]  
Donat MG, 2016, NAT CLIM CHANGE, V6, P508, DOI [10.1038/NCLIMATE2941, 10.1038/nclimate2941]
[3]   Medical Image Segmentation based on U-Net: A Review [J].
Du, Getao ;
Cao, Xu ;
Liang, Jimin ;
Chen, Xueli ;
Zhan, Yonghua .
JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2020, 64 (02)
[4]   Improvements of the Sub-Seasonal Precipitation Predicted by the BCC_S2S Forecast System Over Eastern China in Summer Using the Singular Value Decomposition Bias Correction Method [J].
Fu, Zhipeng ;
Huang, Anning ;
Guo, Qu .
FRONTIERS IN EARTH SCIENCE, 2022, 9
[5]   EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates [J].
Good, Simon A. ;
Martin, Matthew J. ;
Rayner, Nick A. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (12) :6704-6716
[6]   Deep learning for multi-year ENSO forecasts [J].
Ham, Yoo-Geun ;
Kim, Jeong-Hwan ;
Luo, Jing-Jia .
NATURE, 2019, 573 (7775) :568-+
[7]   The ERA5 global reanalysis [J].
Hersbach, Hans ;
Bell, Bill ;
Berrisford, Paul ;
Hirahara, Shoji ;
Horanyi, Andras ;
Munoz-Sabater, Joaquin ;
Nicolas, Julien ;
Peubey, Carole ;
Radu, Raluca ;
Schepers, Dinand ;
Simmons, Adrian ;
Soci, Cornel ;
Abdalla, Saleh ;
Abellan, Xavier ;
Balsamo, Gianpaolo ;
Bechtold, Peter ;
Biavati, Gionata ;
Bidlot, Jean ;
Bonavita, Massimo ;
De Chiara, Giovanna ;
Dahlgren, Per ;
Dee, Dick ;
Diamantakis, Michail ;
Dragani, Rossana ;
Flemming, Johannes ;
Forbes, Richard ;
Fuentes, Manuel ;
Geer, Alan ;
Haimberger, Leo ;
Healy, Sean ;
Hogan, Robin J. ;
Holm, Elias ;
Janiskova, Marta ;
Keeley, Sarah ;
Laloyaux, Patrick ;
Lopez, Philippe ;
Lupu, Cristina ;
Radnoti, Gabor ;
de Rosnay, Patricia ;
Rozum, Iryna ;
Vamborg, Freja ;
Villaume, Sebastien ;
Thepaut, Jean-Noel .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2020, 146 (730) :1999-2049
[8]  
IPCC, 2021, CLIM CHANG 2021 PHYS, P1557
[9]   Towards neural Earth system modelling by integrating artificial intelligence in Earth system science [J].
Irrgang, Christopher ;
Boers, Niklas ;
Sonnewald, Maike ;
Barnes, Elizabeth A. ;
Kadow, Christopher ;
Staneva, Joanna ;
Saynisch-Wagner, Jan .
NATURE MACHINE INTELLIGENCE, 2021, 3 (08) :667-674
[10]   Deep Learning for Seasonal Precipitation Prediction over China [J].
Jin, Weixin ;
Luo, Yong ;
Wu, Tongwen ;
Huang, Xiaomeng ;
Xue, Wei ;
Yu, Chaoqing .
JOURNAL OF METEOROLOGICAL RESEARCH, 2022, 36 (02) :271-281