A Trudinger-Moser type inequality in a strip and applications

被引:0
作者
de Souza, Manasses X. [1 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
关键词
Nonlinear elliptic equations; Trudinger-Moser inequality; Critical exponents; ELLIPTIC-EQUATIONS;
D O I
10.1016/j.aml.2023.108581
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with an improvement of the Trudinger-Moser inequality for the Sobolev space W1,N(ohm) involving domains of the type ohm = RN-1 x (a, b), where N >= 2 and a < b. As an application of this result and by using minimax methods, we establish sufficient conditions for the existence of solutions for a class of elliptic problems with Neumann boundary conditions and nonlinearities with critical exponential growth. (c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:6
相关论文
共 13 条
[1]   On a weighted Sobolev embedding on the upper half-space in a borderline case [J].
Abreu, E. A. M. ;
Medeiros, E. S. ;
Yang, J. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (06) :2715-2732
[2]  
Adimurthi A., 1990, ANN SC NORM SUPER PI, V17, P393
[3]  
[Anonymous], 1997, Abstract and Applied Analysis, V2, P301
[4]   Remarks on the Moser-Trudinger inequality [J].
Battaglia, Luca ;
Mancini, Gabriele .
ADVANCES IN NONLINEAR ANALYSIS, 2013, 2 (04) :389-425
[6]   ELLIPTIC EQUATIONS AND SYSTEMS WITH CRITICAL TRUDINGER-MOSER NONLINEARITIES [J].
de Figueiredo, Djairo G. ;
do O, Joao Marcos ;
Ruf, Bernhard .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (02) :455-476
[7]   ELLIPTIC-EQUATIONS IN R(2) WITH NONLINEARITIES IN THE CRITICAL GROWTH RANGE [J].
DEFIGUEIREDO, DG ;
MIYAGAKI, OH ;
RUF, B .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1995, 3 (02) :139-153
[8]   A sharp Trudinger-Moser type inequality for unbounded domains in Rn [J].
Li, Yuxiang ;
Ruf, Bernhard .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (01) :451-480
[9]   SYMMETRY AND COMPACTNESS IN SOBOLEV SPACES [J].
LIONS, PL .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 49 (03) :315-334
[10]   SHARP FORM OF AN INEQUALITY BY N TRUDINGER [J].
MOSER, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1971, 20 (11) :1077-&