Composition of linear canonical Hankel pseudo-differential operators

被引:0
作者
Singh, Ujjawala [1 ]
Kumar, Tanuj [1 ]
机构
[1] VIT AP Univ, Dept Math, Amaravati, Andhra Prades, India
关键词
Linear canonical transformation; Hankel transformation; Sobolev space; pseudo-differential operators; TRANSFORMATIONS; PAIR;
D O I
10.1142/S1793557123501449
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the study of linear canonical Hankel pseudo-differential operators has been extended to Sobolev-type spaces. Two versions of pseudo-differential operators involving linear canonical Hankel transformation are defined. We have shown that the pseudo-differential operators and composition of pseudo-differential operators are bounded in certain Sobolev-type spaces associated with linear canonical Hankel transformations.
引用
收藏
页数:15
相关论文
共 24 条
[1]   Recent developments in the theory of the fractional Fourier and linear canonical transforms [J].
Bultheel, A. ;
Martinez-Sulbaran, H. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2006, 13 (05) :971-1005
[3]   PSEUDO-DIFFERENTIAL OPERATORS [J].
HORMANDE.L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1965, 18 (03) :501-&
[4]  
KOH EL, 1993, P AM MATH SOC, V119, P153
[5]  
Koh EL., 1994, Integral Transforms Spec. Funct, V2, P279, DOI DOI 10.1080/10652469408819058
[6]   AN ALGEBRA OF PSEUDO-DIFFERENTIAL OPERATORS [J].
KOHN, JJ ;
NIRENBER.L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1965, 18 (1-2) :269-&
[7]   Convolution with the linear canonical Hankel transformation [J].
Kumar, Tanuj ;
Prasad, Akhilesh .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (01) :195-213
[8]  
Linares M., 1991, Bulletin of the Calcutta Mathematical Society, V83, P447
[9]   On Hankel type integral transformations of generalized functions [J].
Malgonde, SP ;
Debnath, L .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2004, 15 (05) :421-430
[10]  
Malgonde SP, 2000, INDIAN J PURE AP MAT, V31, P197