The Baire theorem, an analogue of the Banach fixed point theorem and attractors in T1 compact spaces

被引:0
|
作者
Morayne, Michal [1 ]
Ralowski, Robert [2 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Fundamental Problems Technol, PL-50370 Wroclaw, Poland
[2] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, PL-50370 Wroclaw, Poland
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2023年 / 183卷
关键词
Baire space; Fixed point; T-1; space; Compact space; Contraction; Attractor; MODELS;
D O I
10.1016/j.bulsci.2023.103231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if X is a T1 second countable compact space, then X is a Baire space if and only if every nonempty open subset of X contains a closed subset with nonempty interior. We also prove an analogue of Banach's fixed point theorem for all T1 compact spaces. Applying the analogue of Banach's fixed point theorem we prove the existence of unique attractors for so called contractive iterated function systems whose Hutchinson operators are closed in compact T1 spaces. (c) 2023 Elsevier Masson SAS. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Hemi metric spaces and Banach fixed point theorem
    Ozturk, Vildan
    Radenovic, Stojan
    APPLIED GENERAL TOPOLOGY, 2024, 25 (01): : 175 - 182
  • [2] A Fixed Point Theorem for Increasing Operators in Banach Spaces
    李凤友
    数学季刊, 1994, (01) : 10 - 12
  • [3] A Generalized Banach Fixed Point Theorem
    Shukla, Satish
    Balasubramanian, Sriram
    Pavlovic, Mirjana
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (04) : 1529 - 1539
  • [4] A Generalized Banach Fixed Point Theorem
    Satish Shukla
    Sriram Balasubramanian
    Mirjana Pavlović
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 1529 - 1539
  • [5] BANACH FIXED POINT THEOREM ON ORTHOGONAL CONE METRIC SPACES
    Olia, Zeinab Eivazi Damirchi Darsi
    Gordji, Madjid Eshaghi
    Bagha, Davood Ebrahimi
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (05): : 1239 - 1250
  • [6] ON BANACH'S FIXED POINT THEOREM IN PERTURBED METRIC SPACES
    Jleli, Mohamed
    Samet, Bessem
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (02): : 993 - 1001
  • [7] Remarks on a common Fixed Point Theorem in compact metric spaces
    Imdad, Mohammad
    Ali, Javid
    MATHEMATICAL COMMUNICATIONS, 2010, 15 (01) : 107 - 116
  • [8] A Fixed Point Theorem and an Application for the Cauchy Problem in the Scale of Banach Spaces
    Vo Viet Tri
    Karapinar, Erdal
    FILOMAT, 2020, 34 (13) : 4387 - 4398
  • [9] GENERALIZATIONS OF EDELSTEIN'S FIXED POINT THEOREM IN COMPACT METRIC SPACES
    Suzuki, Tomonari
    FIXED POINT THEORY, 2019, 20 (02): : 703 - 714
  • [10] Banach fixed point theorem for digital images
    Ege, Ozgur
    Karaca, Ismet
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (03): : 237 - 245