Rethinking Pseudo-Labeling for Semi-Supervised Facial Expression Recognition With Contrastive Self-Supervised Learning

被引:10
|
作者
Fang, Bei [1 ,2 ]
Li, Xian [1 ]
Han, Guangxin [1 ]
He, Juhou [1 ]
机构
[1] Shaanxi Normal Univ, Key Lab Modern Teaching Technol, Minist Educ, Xian 710062, Shaanxi, Peoples R China
[2] Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Face recognition; Databases; Deep learning; Convolutional neural networks; Clustering algorithms; Semi-supervised learning; Computer vision; Self-supervised learning; Facial expression recognition; semi-supervised learning; contrastive self-supervised learning; out-of-distribution data;
D O I
10.1109/ACCESS.2023.3274193
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Self-supervised learning for semi-supervised facial expression recognition aims to avoid the need to collect expensive labeled facial expression data. Existing methods demonstrate an impressive performance boost, but they artificially assume that small labeled facial expression data and large unlabeled facial expression data are from the same class distribution. In a more realistic scenario, when utilizing facial expression data from a large face recognition database as unlabeled data, there will be a mismatch distribution between the two sets of data. This often results in severe performance degradation due to incorrect propagation of unlabeled data from unrelated sources. In this paper, we address the class distribution mismatch problem in deep semi-supervised learning-based facial expression recognition. Specifically, we propose a silhouette coefficient-based contrast clustering algorithm, which determines the degree of separation between clusters by examining the intra-cluster and inter-cluster distances to accurately detect out-of-distribution data. In addition, we propose a pseudo-labeling rethinking strategy that matches the soft pseudo-labels estimated from a fine-tuned network to the contrast clustering to produce reliable pseudo-labels. Experiments on three in-the-wild datasets, RAF-DB, FERPlus and AffectNet, demonstrate the effectiveness of our method, and our approach performs well compared to state-of-the-art methods.
引用
收藏
页码:45547 / 45558
页数:12
相关论文
共 50 条
  • [41] Semi-Supervised Group Emotion Recognition Based on Contrastive Learning
    Zhang, Jiayi
    Wang, Xingzhi
    Zhang, Dong
    Lee, Dah-Jye
    ELECTRONICS, 2022, 11 (23)
  • [42] Pseudo-Labeling Optimization Based Ensemble Semi-Supervised Soft Sensor in the Process Industry
    Li, Youwei
    Jin, Huaiping
    Dong, Shoulong
    Yang, Biao
    Chen, Xiangguang
    SENSORS, 2021, 21 (24)
  • [43] SEMI-SUPERVISED 3D OBJECT DETECTION VIA ADAPTIVE PSEUDO-LABELING
    Xu, Hongyi
    Liu, Fengqi
    Zhou, Qianyu
    Hao, Jinkun
    Cao, Zhijie
    Feng, Zhengyang
    Ma, Lizhuang
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3183 - 3187
  • [44] Pseudo-Labeling Based Semi-Supervised Learning for Signal Integrity Analysis of High-Bandwidth Memory (HBM) Interposer
    Mao, Chang-Sheng
    Wang, Da-Wei
    Zhao, Wen-Sheng
    Hu, Yue
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2024, : 2056 - 2064
  • [45] Censer: Curriculum Semi-supervised Learning for Speech Recognition Based on Self-supervised Pre-training
    Zhang, Bowen
    Cao, Songjun
    Zhang, Xiaoming
    Zhang, Yike
    Ma, Long
    Shinozaki, Takahiro
    INTERSPEECH 2022, 2022, : 2653 - 2657
  • [46] FaxMatch: Multi-Curriculum Pseudo-Labeling for semi-supervised medical image classification
    Peng, Zhen
    Zhang, Dezhi
    Tian, Shengwei
    Wu, Weidong
    Yu, Long
    Zhou, Shaofeng
    Huang, Shanhang
    MEDICAL PHYSICS, 2023, 50 (05) : 3210 - 3222
  • [47] Uncertainty-Inspired Credible Pseudo-Labeling in Semi-Supervised Medical Image Segmentation
    Zheng, Zhiyu
    Lv, Liang
    Ni, Bo
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT XIV, 2025, 15044 : 90 - 104
  • [48] Refined Semi-Supervised Modulation Classification: Integrating Consistency Regularization and Pseudo-Labeling Techniques
    Ma, Min
    Liu, Shanrong
    Wang, Shufei
    Shi, Shengnan
    FUTURE INTERNET, 2024, 16 (02)
  • [49] Actor-Aware Self-Supervised Learning for Semi-Supervised Video Representation Learning
    Assefa, Maregu
    Jiang, Wei
    Alemu, Kumie Gedamu
    Yilma, Getinet
    Adhikari, Deepak
    Ayalew, Melese
    Seid, Abegaz Mohammed
    Erbad, Aiman
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (11) : 6679 - 6692
  • [50] Occluded Facial Expression Recognition Using Self-supervised Learning
    Wang, Jiahe
    Ding, Heyan
    Wang, Shangfei
    COMPUTER VISION - ACCV 2022, PT IV, 2023, 13844 : 121 - 136