Rethinking Pseudo-Labeling for Semi-Supervised Facial Expression Recognition With Contrastive Self-Supervised Learning

被引:10
|
作者
Fang, Bei [1 ,2 ]
Li, Xian [1 ]
Han, Guangxin [1 ]
He, Juhou [1 ]
机构
[1] Shaanxi Normal Univ, Key Lab Modern Teaching Technol, Minist Educ, Xian 710062, Shaanxi, Peoples R China
[2] Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Face recognition; Databases; Deep learning; Convolutional neural networks; Clustering algorithms; Semi-supervised learning; Computer vision; Self-supervised learning; Facial expression recognition; semi-supervised learning; contrastive self-supervised learning; out-of-distribution data;
D O I
10.1109/ACCESS.2023.3274193
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Self-supervised learning for semi-supervised facial expression recognition aims to avoid the need to collect expensive labeled facial expression data. Existing methods demonstrate an impressive performance boost, but they artificially assume that small labeled facial expression data and large unlabeled facial expression data are from the same class distribution. In a more realistic scenario, when utilizing facial expression data from a large face recognition database as unlabeled data, there will be a mismatch distribution between the two sets of data. This often results in severe performance degradation due to incorrect propagation of unlabeled data from unrelated sources. In this paper, we address the class distribution mismatch problem in deep semi-supervised learning-based facial expression recognition. Specifically, we propose a silhouette coefficient-based contrast clustering algorithm, which determines the degree of separation between clusters by examining the intra-cluster and inter-cluster distances to accurately detect out-of-distribution data. In addition, we propose a pseudo-labeling rethinking strategy that matches the soft pseudo-labels estimated from a fine-tuned network to the contrast clustering to produce reliable pseudo-labels. Experiments on three in-the-wild datasets, RAF-DB, FERPlus and AffectNet, demonstrate the effectiveness of our method, and our approach performs well compared to state-of-the-art methods.
引用
收藏
页码:45547 / 45558
页数:12
相关论文
共 50 条
  • [21] Integration of Self-supervised BYOL in Semi-supervised Medical Image Recognition
    Feng, Hao
    Jia, Yuanzhe
    Xu, Ruijia
    Prasad, Mukesh
    Anaissi, Ali
    Braytee, Ali
    COMPUTATIONAL SCIENCE, ICCS 2024, PT IV, 2024, 14835 : 163 - 170
  • [22] Boosting semi-supervised learning with Contrastive Complementary Labeling
    Deng, Qinyi
    Guo, Yong
    Yang, Zhibang
    Pan, Haolin
    Chen, Jian
    NEURAL NETWORKS, 2024, 170 : 417 - 426
  • [23] Semi-supervised Time Series Classification Model with Self-supervised Learning
    Xi, Liang
    Yun, Zichao
    Liu, Han
    Wang, Ruidong
    Huang, Xunhua
    Fan, Haoyi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 116
  • [24] Semi-supervised medical image classification with adaptive threshold pseudo-labeling and unreliable sample contrastive loss
    Peng, Zhen
    Tian, Shengwei
    Yu, Long
    Zhang, Dezhi
    Wu, Weidong
    Zhou, Shaofeng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [25] Semi-supervised learning with pseudo-labeling compares favorably with large language models for regulatory sequence prediction
    Phan, Han
    Brouard, Celine
    Mourad, Raphael
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (06)
  • [26] Self-supervised learning and semi-supervised learning for multi-sequence medical image classification
    Wang, Yueyue
    Song, Danjun
    Wang, Wentao
    Rao, Shengxiang
    Wang, Xiaoying
    Wang, Manning
    NEUROCOMPUTING, 2022, 513 : 383 - 394
  • [27] Self-Supervised Learning for Semi-Supervised Temporal Language Grounding
    Luo, Fan
    Chen, Shaoxiang
    Chen, Jingjing
    Wu, Zuxuan
    Jiang, Yu-Gang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 7747 - 7757
  • [28] P-PseudoLabel: Enhanced Pseudo-Labeling Framework With Network Pruning in Semi-Supervised Learning
    Ham, Gyeongdo
    Cho, Yucheol
    Lee, Jae-Hyeok
    Kim, Daeshik
    IEEE ACCESS, 2022, 10 : 115652 - 115662
  • [29] Integrating pseudo labeling with contrastive clustering for transformer-based semi-supervised action recognition
    Li, Nannan
    Huang, Kan
    Wu, Qingtian
    Zhao, Yang
    APPLIED INTELLIGENCE, 2024, 54 (22) : 11177 - 11195
  • [30] CENTER BASED PSEUDO-LABELING FOR SEMI-SUPERVISED PERSON RE-IDENTIFICATION
    Ding, Guodong
    Zhang, Shanshan
    Khan, Salman
    Tang, Zhenmin
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,