CRISPR/Cas9-mediated editing of GmTAP1 confers enhanced resistance to Phytophthora sojae in soybean

被引:12
|
作者
Liu, Tengfei [1 ]
Ji, Jing [1 ]
Cheng, Yuanyuan [1 ]
Zhang, Sicong [1 ]
Wang, Zeru [1 ]
Duan, Kaixuan [1 ]
Wang, Yuanchao [1 ]
机构
[1] Nanjing Agr Univ, Dept Plant Pathol, Nanjing 210095, Peoples R China
基金
美国国家科学基金会;
关键词
CRISPR; Cas9; Genome editing; GmTAP1; Phytophthora sojae; soybean; PATHOGEN;
D O I
10.1111/jipb.13476
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Soybean root rot disease caused by Phytophthora sojae (P. sojae) results in considerable losses in soybean yield, which is difficult to control by chemicals. P. sojae secretes large numbers of effectors to target host factors for favoring infection. Genetic engineering of these host targets is a promising strategy to boost soybean resistance. Although the CRISPR/Cas9-mediated gene editing of susceptibility genes has been used in crop disease resistant breeding, there are no reports about editing soybean susceptibility genes to enhance soybean resistance to soybean root rot disease. We previously found that a key P. sojae effector PsAvh52 suppresses soybean immunity by targeting GmTAP1, which enhances the susceptibility of soybean to P. sojae. Here we focused on knocking out the GmTAP1 by CRISPR/Cas9 gene editing system in soybean. Loss-of-function of GmTAP1 exhibited an enhanced resistance to three P. sojae strains P231, P233, and P234. We also examined the reactive oxygen species (ROS) production, the expression of (PTI)-responsive genes and MAPK activity and found that loss-of-function of GmTAP1 had less effects on plant basal immunity. Moreover, there was no significant difference in plant height, pod number per plant, hundred-grain weight, and yield per plant by investigating the agronomic traits of tap1 mutants in the field. In summary, we created new soybean lines resistant to several P. sojae strains and these lines had no agronomic penalties in the field.
引用
收藏
页码:1609 / 1612
页数:4
相关论文
共 50 条
  • [1] A CRISPR/Cas9-mediated in situ complementation method for Phytophthora sojae mutants
    Qiu, Min
    Li, Yaning
    Ye, Wenwu
    Zheng, Xiaobo
    Wang, Yuanchao
    MOLECULAR PLANT PATHOLOGY, 2021, 22 (03) : 373 - 381
  • [2] CRISPR/Cas9-mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease
    Tripathi, Jaindra N.
    Ntui, Valentine O.
    Shah, Trushar
    Tripathi, Leena
    PLANT BIOTECHNOLOGY JOURNAL, 2021, 19 (07) : 1291 - 1293
  • [3] CRISPR/Cas9-mediated genome editing in Hevea brasiliensis
    Dai, Xuemei
    Yang, Xianfeng
    Wang, Chun
    Fan, Yueting
    Xin, Shichao
    Hua, Yuwei
    Wang, Kejian
    Huang, Huasun
    INDUSTRIAL CROPS AND PRODUCTS, 2021, 164
  • [4] Mosaicism in CRISPR/Cas9-mediated genome editing
    Mehravar, Maryam
    Shirazi, Abolfazl
    Nazari, Mahboobeh
    Banan, Mehdi
    DEVELOPMENTAL BIOLOGY, 2019, 445 (02) : 156 - 162
  • [5] CRISPR/Cas9-mediated genome editing in plants
    Liu, Xuejun
    Xie, Chuanxiao
    Si, Huaijun
    Yang, Jinxiao
    METHODS, 2017, 121 : 94 - 102
  • [6] Epigenetic Footprints of CRISPR/Cas9-Mediated Genome Editing in Plants
    Lee, Jun Hyung
    Mazarei, Mitra
    Pfotenhauer, Alexander C.
    Dorrough, Aubrey B.
    Poindexter, Magen R.
    Hewezi, Tarek
    Lenaghan, Scott C.
    Graham, David E.
    Stewart, C. Neal, Jr.
    FRONTIERS IN PLANT SCIENCE, 2020, 10
  • [7] Approaches to Enhance Precise CRISPR/Cas9-Mediated Genome Editing
    Denes, Christopher E.
    Cole, Alexander J.
    Aksoy, Yagiz Alp
    Li, Geng
    Neely, Graham Gregory
    Hesselson, Daniel
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (16)
  • [8] CRISPR/Cas9-mediated genome editing of Schistosoma mansoni acetylcholinesterase
    You, Hong
    Mayer, Johannes U.
    Johnston, Rebecca L.
    Sivakumaran, Haran
    Ranasinghe, Shiwanthi
    Rivera, Vanessa
    Kondrashova, Olga
    Koufariotis, Lambros T.
    Du, Xiaofeng
    Driguez, Patrick
    French, Juliet D.
    Waddell, Nicola
    Duke, Mary G.
    Ittiprasert, Wannaporn
    Mann, Victoria H.
    Brindley, Paul J.
    Jones, Malcolm K.
    McManus, Donald P.
    FASEB JOURNAL, 2021, 35 (01)
  • [9] Efficient CRISPR/Cas9-mediated genome editing in Rehmannia glutinosa
    Li, Xinrong
    Zuo, Xin
    Li, Mingming
    Yang, Xu
    Zhi, Jingyu
    Sun, Hongzheng
    Xie, Caixia
    Zhang, Zhongyi
    Wang, Fengqing
    PLANT CELL REPORTS, 2021, 40 (09) : 1695 - 1707
  • [10] The Development of Herbicide Resistance Crop Plants Using CRISPR/Cas9-Mediated Gene Editing
    Dong, Huirong
    Huang, Yong
    Wang, Kejian
    GENES, 2021, 12 (06)