Everyday Driving and Plasma Biomarkers in Alzheimer's Disease: Leveraging Artificial Intelligence to Expand Our Diagnostic Toolkit

被引:4
作者
Bayat, Sayeh [1 ,2 ,3 ]
Roe, Catherine M. [4 ]
Schindler, Suzanne [3 ]
Murphy, Samantha A. [3 ]
Doherty, Jason M. [3 ]
Johnson, Ann M. [6 ]
Walker, Alexis [5 ]
Ances, Beau M. [5 ]
Morris, John C. [5 ]
Babulal, Ganesh M. [5 ,7 ,8 ,9 ]
机构
[1] Univ Calgary, Dept Biomed Engn, Calgary, AB, Canada
[2] Univ Calgary, Dept Geomat Engn, Calgary, AB, Canada
[3] Univ Calgary, Hotchkiss Brain Inst, Calgary, AB, Canada
[4] Roe Consulting LLC, St Louis, MO USA
[5] Washington Univ, Dept Neurol, Sch Med, St Louis, MO USA
[6] Washington Univ, Ctr Clin Studies, Sch Med, St Louis, MO USA
[7] Washington Univ, Inst Publ Hlth, Sch Med, St Louis, MO USA
[8] Univ Johannesburg, Dept Psychol, Fac Humanities, Johannesburg, South Africa
[9] George Washington Univ, Dept Clin Res & Leadership, Sch Med & Hlth Sci, Washington, DC USA
关键词
Alzheimer's disease; amyloid; artificial intelligence; driving; naturalistic; plasma biomarkers; CEREBROSPINAL-FLUID; AMYLOID-BETA; DEMENTIA; PERFORMANCE; STATE; TAU;
D O I
10.3233/JAD-221268
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
widespread solution for the early identification of Alzheimer's disease (AD). Objective: This study used artificial intelligence methods to evaluate the association between naturalistic driving behavior and blood-based biomarkers of AD. Methods: We employed an artificial neural network (ANN) to examine the relationship between everyday driving behavior and plasma biomarker of AD. The primary outcome was plasma A beta(42)/A beta(40), where A beta(42)/A beta(40) < 0.1013 was used to define amyloid positivity. Two ANN models were trained and tested for predicting the outcome. The first model architecture only includes driving variables as input, whereas the second architecture includes the combination of age, APOE epsilon 4 status, and driving variables. Results: All 142 participants (mean [SD] age 73.9 [5.2] years; 76 [53.5%] men; 80 participants [56.3%] with amyloid positivity based on plasma A beta(42)/A beta(40)) were cognitively normal. The six driving features, included in the ANN models, were the number of trips during rush hour, the median and standard deviation of jerk, the number of hard braking incidents and night trips, and the standard deviation of speed. The F1 score of the model with driving variables alone was 0.75 [0.023] for predicting plasma A beta(42)/A beta(40). Incorporating age and APOE epsilon 4 carrier status improved the diagnostic performance of the model to 0.80 [0.051]. Conclusion: Blood-based AD biomarkers offer a novel opportunity to establish the efficacy of naturalistic driving as an accessible digital marker for AD pathology in driving research.
引用
收藏
页码:1487 / 1497
页数:11
相关论文
共 50 条
  • [31] Pharmacodynamic effects of semorinemab on plasma and CSF biomarkers of Alzheimer's disease pathophysiology
    Schauer, Stephen P.
    Toth, Balazs
    Lee, Julie
    Honigberg, Lee A.
    Ramakrishnan, Vidya
    Jiang, Jenny
    Kollmorgen, Gwendlyn
    Bayfield, Anna
    Wild, Norbert
    Hoffman, Jennifer
    Ceniceros, Ryan
    Dolton, Michael
    Bohorquez, Sandra M. Sanabria
    Hoogenraad, Casper C.
    Wildsmith, Kristin R.
    Teng, Edmond
    Monteiro, Cecilia
    Anania, Veronica
    Yeh, Felix L.
    ALZHEIMERS & DEMENTIA, 2024, : 8855 - 8866
  • [32] Confounding factors of Alzheimer's disease plasma biomarkers and their impact on clinical performance
    Binette, Alexa Pichet
    Janelidze, Shorena
    Cullen, Nicholas
    Dage, Jeffrey L.
    Bateman, Randall J.
    Zetterberg, Henrik
    Blennow, Kaj
    Stomrud, Erik
    Mattsson-Carlgren, Niklas
    Hansson, Oskar
    ALZHEIMERS & DEMENTIA, 2023, 19 (04) : 1403 - 1414
  • [33] Combined Plasma Biomarkers for Diagnosing Mild Cognition Impairment and Alzheimer's Disease
    Chiu, Ming-Jang
    Yang, Shieh-Yueh
    Horng, Herni-Er
    Yang, Che-Chuan
    Chen, Ta-Fu
    Chieh, Jen-Je
    Chen, Hsin-Hsien
    Chen, Ting-Chi
    Ho, Chia-Shin
    Chang, Shuo-Fen
    Liu, Hao Chun
    Hong, Chin-Yih
    Yang, Hong-Chang
    ACS CHEMICAL NEUROSCIENCE, 2013, 4 (12): : 1530 - 1536
  • [34] Heritability of Alzheimer's disease plasma biomarkers: A nuclear twin family design
    Rousset, Rebecca Z.
    den Braber, Anouk
    Verberk, Inge M. W.
    Boonkamp, Lynn
    Wilson, David H.
    Ligthart, Lannie
    Teunissen, Charlotte E.
    de Geus, Eco J. C.
    ALZHEIMERS & DEMENTIA, 2025, 21 (01)
  • [35] Plasma miRNAs across the Alzheimer's disease continuum: Relationship to central biomarkers
    Liu, Shiwei
    Park, Tamina
    Kruger, Dennis M.
    Pena-Centeno, Tonatiuh
    Burkhardt, Susanne
    Schutz, Anna-Lena
    Huang, Yen-Ning
    Rosewood, Thea
    Chaudhuri, Soumilee
    Cho, MinYoung
    Risacher, Shannon L.
    Wan, Yang
    Shaw, Leslie M.
    Sananbenesi, Farahnaz
    Brodsky, Alexander S.
    Lin, Honghuang
    Krunic, Andre
    Blusztajn, Jan Krzysztof
    Saykin, Andrew J.
    Delalle, Ivana
    Fischer, Andre
    Nho, Kwangsik
    ALZHEIMERS & DEMENTIA, 2024, 20 (11) : 7698 - 7714
  • [36] Inflammatory biomarkers in Alzheimer's disease plasma
    Morgan, Angharad R.
    Touchard, Samuel
    Leckey, Claire
    O'Hagan, Caroline
    Nevado-Holgado, Alejo J.
    Barkhof, Frederik
    Bertram, Lars
    Blin, Olivier
    Bos, Isabelle
    Dobricic, Valerija
    Engelborghs, Sebastiaan
    Frisoni, Giovanni
    Froelich, Lutz
    Gabel, Silvey
    Johannsen, Peter
    Kettunen, Petronella
    Koszewska, Iwona
    Legido-Quigley, Cristina
    Lleo, Alberto
    Martinez-Lage, Pablo
    Mecocci, Patrizia
    Meersmans, Karen
    Luis Molinuevo, Jose
    Peyratout, Gwendoline
    Popp, Julius
    Richardson, Jill
    Sala, Isabel
    Scheltens, Philip
    Streffer, Johannes
    Soininen, Hikka
    Tainta-Cuezva, Mikel
    Teunissen, Charlotte
    Tsolaki, Magda
    Vandenberghe, Rik
    Visser, Pieter Jelle
    Vos, Stephanie
    Wahlund, Lars-Olof
    Wallin, Anders
    Westwood, Sarah
    Zetterberg, Henrik
    Lovestone, Simon
    Morgan, B. Paul
    Bullmore, Edward T.
    Bhatti, Junaid
    Chamberlain, Samuel J.
    Correia, Marta M.
    Crofts, Anna L.
    Dickinson, Amber
    Foster, Andrew C.
    Kitzbichler, Manfred G.
    ALZHEIMERS & DEMENTIA, 2019, 15 (06) : 776 - 787
  • [37] Plasma biomarkers for mild cognitive impairment and Alzheimer's disease
    Song, Fei
    Poljak, Anne
    Smythe, George A.
    Sachdev, Perminder
    BRAIN RESEARCH REVIEWS, 2009, 61 (02) : 69 - 80
  • [38] Potential Applications of Artificial Intelligence in Clinical Trials for Alzheimer's Disease
    Seo, Younghoon
    Jang, Hyemin
    Lee, Hyejoo
    LIFE-BASEL, 2022, 12 (02):
  • [39] Artificial Intelligence Techniques for the effective diagnosis of Alzheimer's Disease: A Review
    Shastry, K. Aditya
    Sanjay, H. A.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (13) : 40057 - 40092
  • [40] The application of artificial intelligence in diagnosis of Alzheimer's disease: a bibliometric analysis
    An, Xiaoqiong
    He, Jun
    Bi, Bin
    Wu, Gang
    Xu, Jianwei
    Yu, Wenfeng
    Ren, Zhenkui
    FRONTIERS IN NEUROLOGY, 2024, 15